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All the six questions are compulsory.

Attempt any two parts from each question.

" 1. (a) Show that the vector (1,2, 1), (3, 1, 5), (3, =4, 7)
.in R® are linearly dependent. : 6

(b) Reduce the matrix to normal form and hence
determine its rank:

PTO.



(1 1 2 3)
1 3 0 3
1 -2 -3 -3
d 1 2 3 ) 6
(c¢) Find the charactenstlc equation of the matrix:
1.2 3}
A=|2 '3 4
1 0 -1
and hence compute its cube. 6

2. (8) ¥ m=cosa+i sina and n=cosf+isinf, prove
that:—

612

2R i tan (a_—ﬁ) .

m+n 2
(b) Prove that:

~128 sin® 0 cos? @=cos 804 cos 66+4 cos 40+4 cos 26— 5
612

(© If o8,y are the roots of x3+px2+qx+r—u
evaluate:

03y
(ii) Eazﬁ 6112



3. (a)

(b)

(c}

4. (a)

(b)

(€)

5. (a)

3 . 34

Discuss the continuity at x=0, 1, 2 of the function
(—x2  when x<0

Sx—4 when 0(<x=<1

4¢3—-3x when 1=x<2

L3::«!-4- when x22 6

foy=

If y=sin (m sin~! §), show that:
(1—-x2)y,,+2—(2n+1)xy,,+1 +(n2“m2)}’n=0- 6

If u=sin! (’i:_i-yﬁ) , prove that:

ou  ou '
...—-+ —— R
X ; y 3 =tanu 6

Prove that the eguation of the normal to the
asteroid x**+ =g?? can be written in the form
x sing—y sing+a cos 29=0. 6
For the cycloid x=a(6+si11'6’), y=qa(l—cos§),

prove that p, radius of curvature, is:

)
- p=4a cos > p

Trace the curve
y2(2a -x)=x3, a>{. 6

State Lagrange’s Mean Value Theorem. Verify
Lagrange’s Mean Value Theorem for the function

P T.O.
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(b)
- ©

6. (a)

®).

©

- 4

fx)=x(x—-1D)(x —é) in the i'nte’:rv'al [0, %] 3 i

X
Show that the maximum value of (l) is el
X 612

Evaluate:

A O
(i) lim {cot)iogx
x=+0

i) lim (tauh).

x | tanx
X

612

E‘}aluate:

. * iz
0 { Vsinx *Voost &

_ 6172
Find the whole area of the curve:

2P+ =a (2 —y). 6172
Find the volume of solid generated by rotating the
ellipse 4x>+y*>=4 about x-axis. 6172
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PART - A (ALGEBRA)
SECTION-I

1. (a) Prove that set of vectors:

{(2,2,-3), (0,-4, 1), (3,1,-4)} in R? is linearly
dependent. A ©(6.5)

P.T.O.
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(b) Reduce the matrix :

1 3 6 -1
1 45 1
15 4 3

to its normal form and hence find its rank. (6.5)

(c) Determine the characteristics roots and the

corresponding characteristics vectors of the matrix :
32090

o s 1 6.5)
00 2 -

"SECTION-II

2. (a) Find the sum of series:

cos® + x cos 20 + x? cos 30 ..vveenn.. up ton
terms (6.5)

(b) If z=cos 6 + isin®, show that:

In

ZZn +1

=i tan nb (6.5)

(c) If o, B,y are the roots of the equation :
x3-3x2+6x-2 = 0
" from the equation whose roots are

B2+ 72, 2 + o2, o + p2. (6.5)
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3
PART - B (CALCULUS)
SECTION-III

(a) Prove that if a function f is derivable at a point,
it is continuous at that point. Show by an example
that the converse is not true. (6)

(b) If y = emc»™'x Show that :

(1-x3)y,,, - @n+Dxy,,, - (M?-m?)y =0
(6)

(c) State and prove Euler’s theorem on homogeneous

function. If

2 2
u=log Xty , use this theorem to show that
x+y
du du
X—+y—=1 ‘ '
dx y@x 6)

SECTION-IV

(a) Prove that the equation of the normal to the

asteroid :
X3 4 y22 = Q2

may be written in the form
XCcOS® — ysing@ + acos2g (6)

(b) Find the asymptotes of the curve:
X+ xly ~xy? -y - 2x2+ 2yt x+y+1=0 (6)
P.T.O.
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(c) Find the position and nature of the double point on
the curve:
x3—y2-7x2+4y +15x-13=0 (6)
SECTION-V
5. (a) State and Prove Lagrange’s Mean value Theorem.
(6)
(b) Find the maximum and minimum value of the
function :
f(x)=x+l,x==0 : (6)
X
{c) Evaluate
(@ lim,_,(sinx)’
(i) tim,_p e (©)
Xsinx
SECTION-VI
6. (a) Evaluate:
j dx
(xz-l)\/xzﬂ ' (6.5)
(b) Find the volume of a sphere of radius é using
(6.5)

integration.
(c) Find the surface area of the solid of revolution,
obtained by revolving the ellipse :

]

¥,
9

(6.5)

(500)

2
X
—+
4

about X-axis.



