[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	5188	D	Your Roll No
Unique Paper Code	:	236151		
Name of the Course	:	B.A. (Programme))	
Name of the Paper	:	Operational Resear	ch –	- I (Linear Programming)
Semester	:	Ι		
Time : 3 Hours				Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Answer any five questions.
- 3. All questions carry equal marks.
- 4. Simple calculators are allowed.
- 5. Graph paper can be used.
- (a) What is Operations Research ? What is a model in Operations Research ? What are the main characteristics that a good model for Operations Research should have ?

(b) Define a convex set. Examine whether the set $S = \{(x_1, x_2) | x_1^2 + x_2^2 \le 4\}$ is convex or not. (3+5)

- 2. (a) Differentiate the following :
 - (i) Linear dependence and independence of vectors
 - (ii) Basic solution and basic feasible solution
 - (iii) Degenerate and non-degenerate solution (3+3+3)

5188

- 2
- (b) Obtain all the basic solutions to the following system of linear equation:

$$x_1 + 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + 5x_3 = 5$$
 (6)

- 3. (a) A firm manufactures two products A and B on which the profits earned per unit are Rs. 3 and Rs. 4 respectively. Each product is processed on two machines M1 and M2. Product A requires one minutes of processing time on M1 and two minutes on M2 while B requires one minute on M1 and one minute on M2. Machine M1 is available for not more than 7 hours and while Machine M2 is available for 10 hours during any working day. Find the number of units of products A and B to be manufactured to get maximum profit. (Use graphical method) (7+4)
 - (b) Give graphical representation of the following cases in LPP :
 - (i) Unbounded solution
 - (ii) Infeasible solution (2+2)
- 4. Use simplex method to solve the following LPP :

Maximize $z = 4x_1 + 10 x_2$

Subject to the constraints :

$$2x_{1} + x_{2} \leq 50$$

$$2x_{1} + 5x_{2} \leq 100$$

$$2x_{1} + 3x_{2} \leq 90; x_{1} \& x_{2} \geq 0$$
(15)

5188

- 5. (a) What is two phase method for solving a given linear programming problem ? Why is it used ? (4+1)
 - (b) Use the simplex method to solve the following simultaneous linear equations :

$$x_1 + x_2 = 1$$

 $2x_1 + x_2 = 3$ (10)

6. (a) Solve the following assignment problem :

		А	В	С	D	
	Ι	1	4	6	3	
Workers	II	9	7	10	9	
	III	4	5	11	7	
	IV	8	7	8	5	

(b) The following is the initial basic feasible solution to a transportation problem. Find the optimal solution for the same.

											Supply
			15		85			·			100
		20		18		18		21		19	
- 			20				105		_		125
		21		22		23		20		24	
	60		45						70		175
		18		19		21		18		19	
Demand	60		80		85		105		70		

(8)

5188

7. (a) Write the dual of the following linear programming problem;

 $Max Z = 6x_1 + 4x_2$

Subject to constraints;

 $2x_{1} + 3x_{2} \leq 30$ $3x_{1} + 2x_{2} \leq 24$ $x_{1} + x_{2} \geq 3, x_{1} \text{ and } x_{2} \text{ are unrestricted in sign.}$ (8)

(b) State and prove Weak duality theorem.

(7)