This question paper conta	ins 4+2 printed pages]				,
		Roll No.			
S. No. of Question Paper	: 77				•
Unique Paper Code	: 237151			E	
Name of the Paper	: Basic Statistics and	Probability			
Name of the Course	: B.A. (Programme)	Statistics			
Semester	: I			٠.	
Duration: 3 Hours				Maximum Ma	rks : 75
(Write your Roll N	No. on the top immedi	ately on recei	pt of this	question paper	.)
	Question No. 1	is compulsory			
	Attempt six q	uestions in all.			
	Simple calculat	or can be used	i .		
1. (a) Fill in the blan	nks:	••			. 5
(i) For a sy	mmetrical distribution	β ₁ =	********		
(ii) Probabil	ity of impossible even	t =	•••••		
(iii) If A and	d B are mutually exclu	sive events, th	nen P(A C	B) =	
•			•	•	•

P.T.O.

(iv)) Mean	deviation	is	least	when	taken	about		
------	--------	-----------	----	-------	------	-------	-------	--	--

(v) If one of the regression coefficients is greater than unity, then other must

(b) A random variable X has the following probability function:

 X
 P(X)

 0
 0

 1
 k

 2
 2k

 3
 2k

 4
 3k

 5
 k^2

 6
 $2k^2$

 7
 $7k^2 + k$

- (i) Find k
- (ii) P(0 < X < 5).

(c) The two regression equations are given to be:

$$8X - 10Y + 66 = 0$$
, $40X - 18Y = 214$

with variance of X = 9. Find:

- (i) Mean values of X and Y.
- (ii) The correlation coefficient between X and Y.
- (iii) Standard Deviation of Y.

5

2. (a) Calculate the mean and standard deviation for the following table, giving the age distribution of 542 members:

ge (in Years)	No. of Members
20-30	3
30—40	61
40—50	132
5060	153
60—70	140
70—80	51
80—90	2

(b) In a series of measurements, we obtain m_1 values of magnitude x_1 , m_2 values of magnitude x_2 and so on. If $\bar{\mathbf{X}}$ is the mean value of all the measurements, prove that the standard deviation is:

$$\sqrt{\frac{\sum m_r (k-x_r)^2}{\sum m_r} - \delta^2}$$

where $\bar{X} = k + \delta$ and k is any constant.

- (a) Let r be the range and s be the standard deviation of a set of observations ·3. x_1, x_2, x_3 , x_n , then prove that $s \le r$.
 - What do you mean by Skewness and Kurtosis? Prove that Kurtosis is greater than (b) unity.
 - Show that for *n* events A_1 , A_2 ,, A_n :

(i)
$$P\left(\bigcap_{i=1}^{n} A_i\right) \ge \sum_{i=1}^{n} P(A_i) - (n-1)$$

$$(ii)$$
 $P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P(A_{i}).$

- (b) A problem in statistics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently?
- 5. (a) Prove that for any two events A and B:

 $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$.

- (b) State and prove Bayes' theorem.
- 6. (a) Define Karl Pearsonian Correlation Coefficient and show that it is independent of change of origin and scale.
 - (b) X and Y are two random variables with variances σ_x^2 and σ_y^2 and r is the coefficient of correlation between them. If

$$U = X + KY \text{ and } V = X + \frac{\sigma_x}{\sigma_y} Y$$
,

find the value of K so that U and V are uncorrelated.

6

7. (a) Given that

$$X = 4Y + 5$$
 and $Y = KX + 4$,

are the two lines of regression of X on Y and Y on X, respectively, show that 0 < 4K < 1. If K = 1/16, find the means of the two variables and coefficient of correlation between them.

(b) In the usual notation, prove that:

 $\mathbf{R}_{1.23}^2 = \left(r_{12}^2 + r_{13}^2 - 2r_{12}r_{23}r_{31}\right) / \left(1 - r_{23}^2\right).$