This question paper conta	ins 4+2 printed pages]	
	Roll No.	
S. No. of Question Paper	: 77	
Unique Paper Code	: 237151	E
Name of the Paper	: Basic Statistics and Probability	
Name of the Course	: B.A. (Programme) Statistics	
Semester	: I	
Duration: 3 Hours		Maximum Marks: 75
(Write your Roll l	No. on the top immediately on receipt of	f this question paper.)
	Question No. 1 is compulsory.	
•	Attempt six questions in all.	
	Simple calculator can be used.	
1. (a) Fill in the bla	nks:	5
(i) For a sy	rmmetrical distribution $\beta_1 = \dots$	
(ii) Probabi	lity of impossible event =	
(iii) If A an	d B are mutually exclusive events, then 1	$P(A \cup B) = \dots .$

1	۱۰۰۱	Maan	dariation	: -	14	1		1 1	**********************	
1	IVI	i ivican	uevianon	-18	ieasi	wnen	taken	anout		
٠,	. ,			10	10401	7711011	terre tr	uooui	*********	

(v) If one of the regression coefficients is greater than unity, then other must

(b) A random variable X has the following probability function:

 \mathbf{X}

P(X)

0

 \cdot k

2 2k

3 2k

3 *k*

5 k^2

 $2k^2$

 $7k^2+k$

(i) Find k

 $(ii) \quad \text{P}(0 < X < 5)\,.$

(c) The two regression equations are given to be:

$$8X - 10Y + 66 = 0, 40X - 18Y = 214$$

with variance of X = 9. Find:

- (i) Mean values of X and Y.
- (ii) The correlation coefficient between X and Y.
- (iii) Standard Deviation of Y.

5

2. (a) Calculate the mean and standard deviation for the following table, giving the age distribution of 542 members:

Age (in Years)	No. of Members
20—30	. 3
30—40	61
40—50	132
50—60	153
60—70	140
70—80	51
80—90	2

(b) In a series of measurements, we obtain m_1 values of magnitude x_1 , m_2 values of magnitude x_2 and so on. If \bar{X} is the mean value of all the measurements, prove that the standard deviation is:

$$\sqrt{\frac{\sum m_r (k-x_r)^2}{\sum m_r} - \delta^2}$$

where $\overline{X} = k + \delta$ and k is any constant.

6

- 3. (a) Let r be the range and s be the standard deviation of a set of observations $x_1, x_2, x_3, \dots, x_n$, then prove that $s \le r$.
 - (b) What do you mean by Skewness and Kurtosis? Prove that Kurtosis is greater than unity.

(i)
$$P\left(\bigcap_{i=1}^{n} A_i\right) \ge \sum_{i=1}^{n} P(A_i) - (n-1)$$

(ii)
$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P(A_{i})$$

- (b) A problem in statistics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently?
- 5. (a) Prove that for any two events A and B:

$$P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B).$$

- (b) State and prove Bayes' theorem.
- 6. (a) Define Karl Pearsonian Correlation Coefficient and show that it is independent of change of origin and scale.
 - (b) X and Y are two random variables with variances σ_x^2 and σ_y^2 and r is the coefficient of correlation between them. If

$$U = X + KY \text{ and } V = X + \frac{\sigma_x}{\sigma_y} Y$$
,

find the value of K so that U and V are uncorrelated.

6

P.T.O.

7. (a) Given that

$$X = 4Y + 5$$
 and $Y = KX + 4$,

are the two lines of regression of X on Y and Y on X, respectively, show that 0 < 4K < 1. If K = 1/16, find the means of the two variables and coefficient of correlation between them.

(b) In the usual notation, prove that:

$$\mathbf{R}_{1.23}^2 = \left(r_{12}^2 + r_{13}^2 - 2r_{12}r_{23}r_{31}\right) / \left(1 - r_{23}^2\right).$$