[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 5336 D Your Roll No......

Unique Paper Code : 235251

Name of the Course : B.A. (Prog.)

Name of the Paper : Mathematics (Algebra)

Semester : II

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt any two parts from each question.

1. (a) Let S be the set of all matrices of the form

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

where a, b are any complex numbers. Then show that S is a vector space over C with respect to matrix addition and multiplication by a scalar. (6)

- (b) If x, y, z are linearly independent elements of a vector space over R, the field of real numbers, show that x + 3y 2z, 2x + y z and 3x + y + z are also linearly independent.
- (c) Define bases of a vector space and show that the vectors (1,2,1), (2,1,0) and (1,-1,2) form a basis of R³(R).
- 2. (a) Reduce the following matrix in triangular form and hence find its rank.

$$\begin{pmatrix}
1 & 1 & 2 & 3 \\
1 & 3 & 0 & 3 \\
1 & -2 & -3 & -3 \\
1 & 1 & 2 & 3
\end{pmatrix}$$
(6½)

(b) Is the following system of equations consistent?

$$5x + 3y + 14z = 4$$

 $y + 2z = 1$
 $x - y + 2z = 0$
 $2x + y + 6z = 0$,

if yes find the solution. $(6\frac{1}{2})$

(c) Find the characteristic equation and its roots of the matrix:

$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 9 & 0 \\ 0 & 7 & 2 \end{pmatrix} \tag{61/2}$$

3. (a) Solve the equation using De Moivre's Theorem

$$Z^{10} - Z^5 + 1 = 0. ag{6}$$

(b) Prove the following identity

$$64 \sin^3\theta \cos^4\theta = -\sin 7\theta - \sin 5\theta + 3\sin 3\theta + 3\sin \theta. \tag{6}$$

(c) Sum of n terms:

$$\sin\theta + x\sin 2\theta + x^2\sin 3\theta + \dots + n \text{ terms.}$$
 (6)

4. (a) Solve the equation:

$$3x^3 + 11x^2 + 12x + 4 = 0$$
, being given that the roots are in H.P. (6½)

(b) Solve the equation:

$$x^4 + 15x^3 + 70x^2 + 120x + 64 = 0$$

the roots being in GP. (6½)

- (c) If α , β , γ be the roots (all non zero) of the equation $x^3 + px^2 + qx + r = 0$. Find the values of
 - (i) $\sum \alpha^2 \beta^2$

(ii)
$$\sum \alpha^2 \beta$$
 (6½)

- 5. (a) Show that the set S = {0, 1, 2, 3, 4} is an abelian group with respect to addition modulo 5.
 - (b) A non-empty subset H of a group G is a subgroup of G if and only if
 - (i) $a \in H, b \in H \Rightarrow ab \in H$

(ii)
$$a \in H \Rightarrow a^{-1} \in H$$
 where a^{-1} is the inverse of a in G. (6)

- (c) Find the powers of $f = (1 \ 2 \ 3 \ 4 \ 5)$ that is f^2 , f^3 , f^4 , f^5 where $f \in S_5$. (6)
- 6. (a) Prove that the set I of all integers with the binary operation '*' defined by a * b = a + b + 1 for all a, b ∈ I is an abelian group. (6½)
 - (b) Prove that set 2I of all even integers is a commutative ring without unity, the addition and multiplication of integers being two ring compositions. (6½)
 - (c) Prove that rigid motions of a square yield the group S_4 . (6½)

(700)