This ques	stion p	paper contains 4 printed p	ages]			
			Roll No.			
S. No. of	Questi	on Paper : 5328				
Unique Paper Code		ode : 237251			D	
Name of the Paper		per : Statistical M	lethods-I			
Name of t	he Co	irse : B.A. (Prog.)	Statistics			
Semester		: п				
Duration:	3 Hou	urs			Maxim	um Marks : 75
	(Write	e your Roll No. on the top	immediately on rece	ipt of this q	question pape	er.)
		Attemp	ot six questions in al	1.		
		Question	n No. 1 is compulso	ory.		
		Attem	pt 5 more questions			
1. (a)	Fill	in the blanks:				
	(<i>i</i>)	A continuous distribution for which mean = variance is				
	(ii)	If $X \sim N(4, 25)$, mode of the distribution is				
	(iii)	Variance of binomial distribution with parameters n and p is				
	(iv)	Coefficient of variation for Poisson distribution with mean 4 is				
	(v)	If $V(X) = 2$, then $V(5 - X)$ is				

(2) 5328

- (b) If X and Y are independent standard normal variates then find the distribution of X 2Y.
- (c) The m.g.f. of a random variable X is $M_x(t) = \exp [3(e^t 1)]$, using the uniqueness property of m.g.f.'s identify the distribution and its parameters.
- (d) Let X denote the number of successes preceding the rth failure. Find E(X).
- (e) A Poisson variate X is such that P(Y = 2) = P(Y = 3), find its mean and coefficient of skewness. $1 \times 5, 2, 2, 2, 2, 2$
- 2. (a) For the given probability law:

$$d\mathbf{F} = kx^2 e^{-x} dx; \quad 0 < x < \infty$$

Find mean, variance, β_1 and β_2 for the distribution.

- (b) A random variable X assumes the values -3, -2, -1, 0, 1, 2, 3 such that P[X = -3] = P[X = -2] = P[X = -1], P[X = 1] = P[X = 2] = P[X = 3], and P[X = 0] = P[X > 0] = P[X < 0]. Obtain the p.m.f. of X and its distribution function, and further find the p.m.f. of $Y = 2X^2 + 3X + 4$.
- 3. (a) State and prove De-Moivre's Laplace theorem.
 - (b) Examine whether the weak law of large numbers holds for the sequence $\{X_m\}$ of independently and identically distributed random variable where:

$$P(X_i = (-1)^{k-1} \cdot k) = \frac{6}{k^2 \pi^2}; k = 1, 2, 3, \dots; i = 1, 2, 3, \dots$$

(ii) The r.v.'s X_1, X_2, \dots, X_n have equal expectations and finite variation. Is the weak law of large numbers applicable to this sequence if all the co-variances σ_{ij} are negative?

(3) 5328

- 4. (a) The joint probability mass function of two discrete random variables X and Y is given by p(x, y) = c(2x + y), where x and y can assume all integers such that 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, and p(x, y) = 0 otherwise. Find (i) value of constant c;
 (ii) P(X = 2, Y = 1); (iii) P(X ≥ 1, Y ≤ 2), (iv) P(X = x|Y = 2).
 - (b) Obtain Poisson distribution as a limiting case of negative binomial distribution. 6,6
- 5. (a) Define hypergeometric distribution and compute its mean and variance.
 - (b) If $X \sim N (\mu, \sigma^2)$, obtain its mean deviation about mean. 6,6
- 6. (a) If X is a binomial variate with parameters n and p, find the m.g.f. standard binomial variate and obtain its limiting form as $n \to \infty$. Also interpret the result.
 - (b) If $X \sim Poisson(\lambda)$, find mode of the distribution. 6,6
- 7. (a) Show that for the symmetrical distribution :

$$f(x) = \frac{2a}{\pi} \left(\frac{1}{a^2 + x^2} \right); \quad -a \le x \le a,$$

$$\mu_2 = \frac{\alpha^2(4-\pi)}{\pi}$$
 and $\mu_4 = \alpha^4 \left(1 - \frac{8}{3\pi}\right)$.

(b) Compute harmonic mean for beta variate of first kind.

P.T.O.

6,6

(4) 5328

- 8. (a) Let random variable X follow N(μ , σ^2). Find its m.g.f. and hence deduce that all odd order central moments vanish and $\mu_{2n} = 1.3.5$ $(2n-1) \ \sigma^{2n}$
 - (b) If X has an geometric distribution with parameter p, then for every constant $a \ge 0$ $P(Y = t | X \ge a) = P(X \le t) \text{ for all } t, \text{ where } Y = X - a.$ 6,6