This question paper contains 4+2 printed pages]

Your Roll No.....

7563

B.A. Programme/II

D-I

MATHEMATICS—Paper II

(Geometry, Differential Equations and Algebra)

(NC-Admissions of 2004 onwards)

Time: 3 Hours

Maximum Marks: 100

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

1. (a) Sketch the graph of the hyperbola:

$$y^2 - x^2 = 1$$

showing their vertices, foci and asymptotes.

8

- (b) State and explain reflection properties of parabola, ellipseand hyperbola with the help of sketches.
- (c) Find an equation for the ellipse that satisfies the given conditions, length of major axis 26, foci (\pm 5, 0).

P.T.O.

2. (a) Show that the lines L_1 and L_2 are skew:

$$L_1: x = 1 + 7t, y = 3 + t, z = 5 - 3t$$
 $L_2: x = 4 - t, y = 6, z = 7 + 2t$
8.5

(b) Find an equation for the line L of intersection of the planes:

$$2x - 4y + 4z = 6$$

and
$$6x + 2y - 3z = 4$$
. 8.5

(c) Show that planes:

$$x + 2y - 2z = 3$$

and
$$2x + 4y - 4z = 7$$

are parallel.

Find the distance between the planes. 8.5

3. (a) (i) Solve:

$$(D^2 + 3D + 2)y = e^{2x} \sin x$$
.

7563

(ii) Solve:

$$x\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 2y = x\log x.$$

(b) (i) Solve:

$$\frac{d^2y}{dx^2} + y = \csc x,$$

by the method of variation of parameters.

(ii) Solve:

$$(x^2 + y^2 + 2x)dx + 2ydy = 0.$$
 10

(c) (i) Solve:

$$\frac{adx}{(b-c)yz} = \frac{bdy}{(c-a)zx} = \frac{cdz}{(a-b)xy}.$$

(ii) Solve:

$$(x^2 + v^2 + z^2)dx - 2xydy - 2xzdz = 0.$$
 10

4. (a) (i) Eliminate the arbitrary function f from the equation:

$$x + y + z = f(x^2 + y^2 + z^2)$$
.

(ii) Find the general solution of the differential equation:

(

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z.$$
 6.5

(b) (i) Find the general integral of the linear partial differential equation:

$$px(x+y) = qy(x+y) - (x-y)(2x+2y+z).$$

(ii) Find the complete integral of the equation:

$$p = (z + qy)^2. ag{6.5}$$

(c) (i) Find whether the equation:

$$y(x+y)(r-s) - xp - yq - z = 0$$

is elliptic, parabolic or hyperbolic.

$$p + q = pq$$
.

- 5. (a) Prove that the set {1, 2, 3, 4, 5, 6} is a finite abelian group of order 6 under multiplication modulo 7. 8.5
 - (b) Write:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 8 & 7 & 3 & 4 & 6 & 1 & 2 \end{pmatrix}.$$

as product of disjoint cycles and as a product of a transportation. Also construct the associated diagram. 8.5

- (c) Discuss the flip motion of a square and also list all the permutation obtained by flip motion of a square. 8.5
- 6. (a) Solve a treavelling salesman problem for the given cost matrix:

	To	1	2	3	4	
	1	∞	3	9	7	
From	2	3	œ	6	5	
	3	8	6	∞	6	
	4	9.	7	· 4	∞	8.5
	•					

- (b) A smoking machine is used to test the tar-content of four brands of cigarettes; the machine has four parts so that four cigarettes can be smoked simultaneously. However, these four parts may not be identical and that might affect the measurement of the tar-content. Also if four runs were made on the machine testing one brand at a time, the humidity could change, thus affecting the results. Show how to reduce the errors due to the different parts and the different runs by using a Latin square to design the experiment.
- (c) Find a matching or explain why none exists for the following graph:

