[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 5171

F

Your Roll No.....

Unique Paper Code

: 237351

Name of the Paper

: ST: Statistical Methods - II

Name of the Course

: B.A. (Program) Statistics

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt Six questions in all.
- 3. Q. No. 1 is compulsory.
- 4. Simple calculator can be used.
- 1. (a) Fill in the blanks:
 - (i) χ^2 -distribution reduce to negative exponential distribution for ... d.f. .
 - (ii) If χ_1^2 and χ_2^2 are two independent Chi-square variates with n and m

d.f., respectively then $\frac{\chi_1^2}{\chi_2^2} \sim \dots$

- (iii) If $X \sim F(n, m)$, then $\left(\frac{1}{X}\right) \sim \dots$
- (b) Examine the consistency of the following data:

N = 100; (A) = 55, (B) = 65, (AB) = 35, the symbols having their usual meaning.

(c) Show that Student's 't' is a particular case of Fisher's 't'.

5171

- (d) Let $X_i \sim N(i, i^2)$; i = 1,2,3 be independent random variables. Using only the three random variables X_1 , X_2 and X_3 , construct a statistic that has an F-distribution with (1,2) d.f.
- (e) Find the mean of $X \sim \chi^2_{(n)}$. (3×5=15)
- 2. (a) 1600 candidates appeared for a competitive examination, 422 were successful, 256 had, attended a coaching class and of these 150 came out successful. Estimate the utility of the coaching classes.
 - (b) Define Yule's coefficient of association (Q) and the coefficient of colligation (Y). Establish the relation

$$Q = \frac{2Y}{1 + Y^2} \,. \tag{6,6}$$

3. (a) If X is chi-square variate with n d.f., then prove that for large n,

$$\sqrt{2X} \sim N(\sqrt{2n}, 1)$$
.

(b) A certain stimulus administered to each of the 12 patients resulted in the following increase of blood pressure:

Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood pressure? (6,6)

- 4. (a) Explain clearly the procedure generally followed in testing of a hypothesis.

 Point out the difference between one-tail and two-tail tests.
 - (b) If the random variables X_1 and X_2 are independent and follow chi-square distribution with \vec{n} d.f., show that $\sqrt{n} (X_1 X_2)/2\sqrt{X_1 X_2}$ is distributed as Student's t with n d.f., independently of $X_1 + X_2$. (6,6)

5. (a) For the entries in following 2×2 contingency table,

a	b
С	d

prove that chi-square test of independence gives

$$\chi^2 = \frac{N(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)},$$

where N = a + b + c + d.

(b) In a certain experiment to compare two types of animal food A and B, the following results of increase in weights were observed in animals:

Animal num	ber	1	2	3	4	5	6	7	8
Increase weight in lb	Food A	49	53	51	52	47	50	52	53
	Food B	52	55	52	53	50	54	54	53

Assuming that the two samples of animals are independent, can we conclude that food B is better than food A?

(6,6)

6. (a) For t -distribution with n d.f. show that:

$$\mu_{2r+1} = 0$$

and

$$\mu_{2r} = n^{r} \frac{\Gamma\left(\frac{n}{2} - r\right) \Gamma\left(r + \frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)}; \quad r = 0, 1, 2, \dots$$

(b) Find mean and variance of F distribution with n_1 and n_2 d.f.. (6,6)

7. (a) A soft drink vending machine is set in such a way that the amount of drink dispensed is a random variable with a mean of 20 millilitres and a standard deviation of 15 millilitres. What is the probability that the average amount dispensed in a random sample of size 36 is at least 205 millilitres?

(b) State and prove relationship between F and χ^2 distribution. (6,6)

Write short notes on:

- (a) χ^2 test for goodness fit.
- (b) t-test for difference of means.
- (c) Test of significance of the difference of standard deviation, in case of large (4,4,4)sampling.