Your Roll No. ....

Sl. No. of Ques. Paper: 2320

GC-3

Unique Paper Code

: 62354343

Name of Paper

: Analytical Geometry and Applied Algebra

Name of Course

: B.A. (Prog.) Mathematics (CBCS)

Semester

: III

Duration:

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.

Attempt any two parts from each question.

## SET-C

1. (a) Identify and sketch the curve:

$$x = y^2 - 4y + 2$$

and also label the focus, vertex and directrix.

6

(b) Describe the graph of the curve:

$$3(x+2)^2+4(y+1)^2=12$$

Also find its centre and foci.

6

(c) Describe the graph of the hyperbola:

$$x^2 - y^2 - 4x + 8y - 21 = 0$$

And sketch its graph.

6

- 2. (a) Find the equation of the parabola that has its vertex at (1,2) and focus at (4,2). Also state the reflection property of parabola.
- .
- (b) Find the equation of the ellipse whose length of major axis is 26 and foci (±5,0) and also sketch it.

6

6

(c) Find and sketch the curve of the hyperbola whose foci are (6,4) and (-4,4) and eccentricity is 2.

6

3. (a) Consider the equation:

$$3x^2 + 2xy + 3y^2 = 19$$
.

Rotate the coordinate axes to remove the xy-term. Then identify the type of conic represented by the equation and sketch its graph.

6

- (b) Let an x'y' coordinate system be obtained by rotating an xy coordinate system through an angle  $\theta = 30^{\circ}$ .
  - (i) Find the x'y' coordinate of the point whose xy coordinates are (2, 4).
  - (ii) Find an equation of the curve  $2x^2 + 2\sqrt{3}xy = 3$  in x'y' coordinates.
- (c) Find the equation of two spheres that are centered at the origin and are tangent to the sphere of radius 1 centered at (0,0,7).

6

6

- 4(a) (i) Find a vector of length 9 and oppositely directed to  $\mathbf{v} = -5\mathbf{i} + 4\mathbf{i} + 8\mathbf{k}$ .
  - (ii) Sketch the surface 2x + z = 3 in 3-space.

 $3+3\frac{1}{2}$ 

- (b) (i) Find the vector component of  $\mathbf{v} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$  orthogonal to  $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 28\mathbf{k}$ .
  - (ii) Find the area of triangle with vertices P(2, 0, -3), Q(1,4, 5), R(7, 2, 9).

 $3+3\frac{1}{2}$ 

(c) Prove that

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

and interpret the result geometrically.

 $6\frac{1}{2}$ 

5 (a) Let L<sub>1</sub> and L<sub>2</sub> be the lines whose parametric equations are

$$L_1 : x = 4t$$
  $y = 1-2t$   $z = 2 + 2t$ 

$$L_2$$
:  $x = 1 + t$   $y = 1 - t$   $z = -1 + 4t$ 

- (i) Show that the lines  $L_1$  and  $L_2$  intersect at the point (2, 0, 3).
- (ii) Find the parametric equation of line that is perpendicular to  $L_1$  and  $L_2$  and passes through their point of intersection.  $3+3\frac{1}{2}$
- (b) (i) Determine whether the points  $P_1$  (6, 9, 7),  $P_2$  (9, 2, 0) and  $P_3$  (0, -5, -3) lie on the same line.
  - (ii) Where does the line

$$x = 2 - t$$
,  $y = 3t$ ,  $z = -1 + 2t$ 

intersect the plane 2y + 3z = 6.

 $3+3\frac{1}{2}$ 

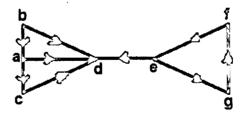
(c) (i) Find the equation of the plane through (1, 4, 3) that is perpendicular to the line

$$x = 2 + t$$
,  $y + 3 = 2t$ ,  $z = -t$ .

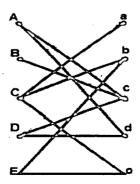
(ii) Determine whether the planes

$$3x - 2y + z = 1$$
,  $4x + y - 2z = 4$ 

are parallel, perpendicular or neither.


$$3+3\frac{1}{2}$$

- 6. (a) Given three containers 3, 7, and 10 liters respectively with the largest being full of water, determine a minimum sequence of pouring method of dividing this quantity of water into two equal amounts of 5 liters using the three containers and no other measuring devices.
- (b) Is the following square a Latin square? Can it be a group with the multiplication operation defined?


| * | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 2 | 1 | 4 | 5 | 3 |
| 3 | 3 | 4 | 5 | 2 | 1 |
| 4 | 4 | 5 | 1 | 3 | 2 |
| 5 | 5 | 3 | 2 | 1 | 4 |

 $6\frac{1}{2}$ 

(c) (i) Given the influence model. Find the sets of minimum number of vertices which can influence every other vertex in the graph.



(ii) Find a matching or explain why none exists for the following graph.



 $3+3\frac{1}{2}$