Roll No.						
			,	l	1	i

 \mathbf{C}

S. No. of Question Paper : 782

Unique Paper Code : 237451

Name of the Paper : Statistical Inference and Regression Analysis

Name of the Course : B.A. (Program)

Semester : IV

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all.

Question No. 1 is compulsory.

- 1. (i) Give examples of estimators which are:
 - (a) Consistent and unbiased
 - (b) Consistent but not unbiased.
 - (ii) Obtain sufficient estimator for the parameter θ of the distribution :

$$f(x:\theta) = \theta.e^{-\theta x}, x > 0, \theta > 0$$

- (iii) Show by means of an example that MLE need not be unique.
- (iv) Let p be the probability of appearance of head in a single toss of coin in order to test:

 $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of Type I error and Type II error.

2) 782

(v) For the simple regression model:

$$Y = \beta_0 - \beta_1 X + \varepsilon$$
, show that $\sum e_i Y_i = 0$. 5×3=15

- 2. (a) State and prove invariance property of consistent estimators. Hence or otherwise, obtain consistent estimator for $\frac{1}{\theta}$ of Poisson population with parameter θ .
 - (b) State Rao-Blackwell theorem and explain its significance. 8,4
- 3. (a) Define MVU estimator. Show that MVU estimator is unique.
 - (b) Obtain Cramer-Rao lower bound for the variance of an unbiased estimator θ of normal distribution $N(\theta, \sigma^2)$, where σ^2 is known.
- 4. (a) Obtain MLF of θ for a population with p.d.f.:

$$f(x:\theta) = (1+\theta) x^{\theta}, \ 0 < x < 1$$

based on a random sample of size n. Also verify whether there exists a sufficient statistic for θ .

- (b) Differentiate between point and interval estimations. Obtain 100 $(1 \alpha)\%$ confidence interval for the parameter θ of the normal distribution $N(\theta, \sigma^2)$, where σ^2 is known.
- 5. (a) Explain the following:
 - (i) Simple hypothesis and power of a test
 - (ii) Critical region and level of significance
 - (iii) Neymann-Pearson lemma.
 - (b) Discuss run test for randomness of a series. 6.6

- 6. Write short notes on any three:
 - (i) Properties of ML estimators
 - (ii) Sign test
 - (iii) Confidence interval for proportions
 - (iv) Multiple linear regression.

4.4.4

- 7. Discuss the analysis of variance for simple linear regression model using matrix approach. 12
- 8. Obtain the BLUE of $\hat{\beta}_1$ for simple linear regression model :

12

 $Y = \beta_0 + \beta_1 X + \varepsilon$.