[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 5390 D Your Roll No......

Unique Paper Code : 237451

Name of the Course : B.A. (Program)

Name of the Paper : Statistical Inference and Regression Analysis

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt six questions in all.

3. Question No. 1 is compulsory.

1. (i) If T is an unbiased estimator for θ . Examine whether T^2 is unbiased for θ^2 .

(ii) For a random sample of size n drawn from a population with p.d.f.:

$$f(x, \theta) = \theta x^{\theta-1}; \ 0 < x < 1, \quad \theta > 0.$$

Show that $\prod_{i=1}^{n} X_i$ is sufficient for θ .

(iii) Examine whether there exist an MVB estimator for θ in Cauchy's population with p.d.f. :

$$f(x, \theta) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, \quad -\infty < x < \infty$$

(iv) The probability that a given die shows even number is p. To test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{1}{3}$, following procedure is adopted. Toss the die twice and accept H_0 if both times it shows even number. Find probabilities of Type I and Type II errors.

- (v) For the simple regression model $Y = \beta_0 + \beta_1 X + \epsilon$, show that $\sum e_i X_i = 0$.

 (3×5=15)
- 2. (a) Let $\{T_n\}$ be sequence of estimators such that for all $\theta \in \Theta$.
 - (i) $E_{\theta}(T_n) \to \gamma(\theta)$ as $n \to \infty$
 - (ii) $Var_{\theta}(T_n) \to 0$ as $n \to \infty$

Prove that T_n is a consistent estimator of $\gamma(\theta)$.

- (b) Find the MLE for the parameter λ of a Poisson distribution on the basis of a sample of size n. Also find its variance.
 (7,5)
- 3. (a) Let X_1 , X_2 , and X_3 be a random sample from a population with mean μ and variance σ^2 . If $T_1 = X_1 + X_2 X_3$, $T_2 = 2X_1 4X_2 + 3X_3$ and

$$T_3 = \frac{1}{3} (\lambda X_1 + X_2 + X_3).$$

- (i) Show that T_1 and T_2 are unbiased estimators of μ .
- (ii) Find the value of λ such that T_3 is unbiased for μ .
- (iii) Which is the best estimator among T₁, T₂ and T₃?
- (b) Suppose T_1 is a minimum variance unbiased estimate of $\gamma(\theta)$ and T_2 is any other unbiased estimate of $\gamma(\theta)$ with variance σ^2/e . Then prove that the correlation between T_1 and T_2 is \sqrt{e} . (6,6)
- 4. (a) Obtain the MVB estimator for θ in a normal population N(θ , σ^2), where σ^2 is known.

(b) Obtain $100(1-\alpha)\%$ confidence interval for the parameter θ of the normal distribution $N(\theta, \sigma^2)$, where σ^2 is unknown. (6,6)

3

- 5. (a) State Neyman-Pearson Lemma and explain its significance.
 - (b) Define level of significance and power of test.

Let
$$f(x, \theta) = \frac{1}{\theta} e^{\left(\frac{-x}{\theta}\right)}, \ 0 < x < \infty, \ \theta > 0$$

To test $H_0: \theta = 2$ against $H_1: \theta = 1$, use random sample x_1 and x_2 of size 2 for the critical region $W = \{(x_1, x_2): 9.5 \le x_1 + x_2\}$

Find (i) level of significance

- 6. Write short notes on any three of the following:
 - (a) Confidence interval for proportion
 - (b) Run Test
 - (c) Properties of Maximum likelihood estimator
 - (d) Rao-Blackwell Theorem (4,4,4)
- 7. For simple linear regression model $y = \beta_0 + \beta_1 X + \epsilon$
 - (i) Obtain the estimates of the parameters β_0 , β_1 using principle of least squares.
 - (ii) Obtain the variances of the estimates $\widehat{\beta}_0$, $\widehat{\beta}_1$. (6,6)

- 8. (i) Write a short note on multiple linear regression model and explain its significance.
 - (ii) State Gauss Markov theorem and explain its importance. (6,6)