[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 5387 D Your Roll No......

Unique Paper Code : 236451

Name of the Course : B.A. (Programme)

Name of the Paper : Queuing and Reliability Theory

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Do any five out of seven questions.
- 3. All questions carry equal marks.
- 4. Simple calculators are allowed.
- 1. (a) Give different types of service disciplines in a Queuing system. Also briefly describe the various models you have studied in Queuing. (8)
 - (b) Show that the arrival rate in a Queuing system follows Poisson distribution. (7)
- (a) Megacab company has one reservation officer. Customers arrive at a rate of 8/hour and the officer can service 12 customer/hour, calculate traffic intensity, L, L_a, W, W_a.
 - (b) Obtain the steady state equations for the Queing model $(M/M/I/K/\infty)$ and solve them for P_o and P_n .

 Here notations have their usual meanings. (7)
- 3. (a) Obtain difference-differential equations for M/M/C/∞ Model. (7)
 - (b) Show that in queuing model with unlimited number of service channels the steady state probability distributions of having n units in the system is Poisson with parameter λ/μ.
 (8)

3307	4
4. (a)	Derive the Reliability, Hazard rate and mean time before failure of a system with exponential life distribution. (5)
(b) (c)	Suppose that we have a system of n components, show that an arrangement of parallel system is better than series system. (7)
	Differentiate between jockeying, balking, and reneging, in queuing theory. (3)
5. (a) (b)	Explain the difference between age replacement, corrective maintenance and preventive maintenance. (6)
	Give assumptions for standby systems and obtain the steady state solution for a two unit standby system with repair. (9)
6. (a)	If Ri (t) is the reliability of the i th component, obtain the reliability of series – parallel system. (7)
(b)	Trains arrive at the yard every 15 minutes and the service time is 33 minutes.
	If the line capacity of the yard is limited to 4 trains, find using M/M/I/K model.
	(i) The probability that the yard is empty.
	(ii) The average number of trains in the system. (8)
7. (a) (b)	Obtain the Mean time before failure of a systems with Weibull life distribution. (6)
	Write short notes any two of the following:
	(i) Standby systems and parallel systems.
	(ii) Finite source queues.

(iii) Assumptions of queuing theory.

(iv) Performance measures of $M/M/l/\infty$ model.

(9)