[This question paper contains 2 printed pages.]

Sr. No. of Question Paper : 246 E Your Roll No.....

Unique Paper Code : 237451

Name of the Course : B.A. (Program)

Name of the Paper : Statistical Inference and Regression Analysis

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt any six questions.

3. Question No. 1 is compulsory.

4. Use of Simple Calculator is allowed.

1. (a) Let X follow $N(\mu, \sigma^2)$ where σ^2 is known. Show that X is a consistent estimator of μ for large n.

(b) Show by means of an example that MLE need not be unbiased.

(c) Obtain sufficient estimator for the parameter θ of $f(x,\theta) = \theta x^{\theta-1}$ 0 < x < 1.

(d) For the simple Linear Regression Model $Y=\beta_0+\beta_1x+\epsilon_1$ show that $\sum e_i\hat{Y}_i=0$.

(e) Let p be the probability that a coin will fall head in a single toss. In order to test

$$H_0: p = \frac{1}{2} \text{ against } H_1: p = \frac{2}{3}$$

the coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of Type I error and Type II error.

(2,2,2,2,2)

2. (a) State sufficient conditions for consistency. Obtain consistent estimator for parameter θ of the Bernoulli population with pmf

$$f\left(x,\theta\right) = \begin{cases} \theta^{x} \left(1-\theta\right)^{1-x} & x = 0,1\\ 0, & \text{otherwise.} \end{cases}$$

(b) Show that MVUE is unique.

(6,6)

- 3. (a) Given one observation from a population with pdf $f(x, \theta) = \frac{2}{\theta^2}(\theta x), 0 \le x \le \theta$, obtain $100(1 \alpha)\%$ confidence interval for θ .
 - (b) Obtain MVB estimator for parameter θ of Poisson distribution with pmf

$$f(x,\theta) = \begin{cases} \frac{e^{-\theta}\theta^x}{x!}, & x = 0,1,2.... \\ 0, & \text{otherwise.} \end{cases}$$
 (7,5)

- 4. (a) State Neyman-Pearson Lemma and define the following terms:
 - (i) Simple Hypothesis
 - (ii) Critical Region
 - (iii) Two types of errors
 - (b) Let $X \sim N(\mu, 4)$, μ unknown. To test $H_0: \mu = -1$ against $H_1: \mu = 1$ based on a sample of size 10 from this population, we use the critical region: $x_1 + 2x_2 + \dots + 10x_{10} \ge 0$. What is its size? You may use one of these values as answers and justify your answer. (0.75, 0.5, 0.1808). (6,6)
- 5. (a) State Rao Blackwell Theorem and explain its significance.
 - (b) Define MVU estimator. Show that MVUE is unique. (6,6)
- Discuss the analysis of variance for simple linear regression model using matrix form. (12)
- 7. For the simple Linear Regression Model $Y = \beta_0 + \beta_1 x + \epsilon$,
 - (i) Prove that $cov(\widehat{\beta_0}, \widehat{\beta_1}) = -\frac{\overline{x}\sigma^2}{s_{xx}}$.

(ii) Obtain BLUE of β_1 (5,7)

- 8. Write short notes on any three:
 - (i) Sign Test
 - (ii) Multiple Linear Regression
 - (iii) Run Test
 - (iv) Confidence Interval for Proportions (4,4,4)

(100)