This question paper contains 4 printed pages]

Your Roll No.

4584

B.A. Prog./III

AS

APPLICATION COURSE—MATHEMATICS FOR

SOCIAL SCIENCES

(Admissions of 2004 & onwards)

Time: 2 Hours

Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory and carries 15 marks.

Attempt four more questions selecting

at least one question from each Section.

Each question carries 10 marks.

1. (i) Given.

$$A = \begin{bmatrix} 2 & 8 \\ 3 & 0 \\ 5 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}.$$

Calculate AB. Can you calculate BA? Explain your answer.

(2) 4584

(ii) Show that:

$$\lim_{x \to 4} \frac{x^2 - 9x + 20}{x^2 - 3x - 4} = -\frac{1}{5}.$$

(iii) If $y = x^x$, find $\frac{dy}{dx}$.

(iv) If
$$z = \log(x^2 + y^2)$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

(v) Solve the following differential equation:

$$xy dx + (1 + x^2) dy = 0.$$
 53

Section 1

- 2. (i) Show that the function $f(x) = x^3 6x^2 + 9x + 8$ has a maximum value at x = 1 and a minimum value at x = 3.
 - (ii) Sketch the graph of the parabola $x^2 = 12y$. 5
- 3. (i) Find $\int x^2 \log x \, dx$, 5
 - (ii) Examine the continuity of the function

$$f(x) = \begin{cases} 2-x, & \text{if } x \leq 1\\ 2-x, & \text{if } x > 1 \end{cases}$$

at x = 1,

5

Section II

- 4. (i) Write down the Taylor's series for $\sin x$ and compute $\sin (0.1)$ to three places of decimal.
 - (ii) Test for convergence the series whose *n*th term is $(\sqrt{n+1} \sqrt{n})$.
- 5. (i) For what value of λ are the vectors $\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 4\hat{i} + 9\hat{j} + 2\hat{k}$ are perpendicular to each other?
 - (ii) Solve the following differential equation:

$$y(1+x) dx + x (1+y) dy = 0.$$
 5

Section III

6. (i) Find the rank of the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

(ii) Solve the following system of equations:

$$x - 3y + z = -1$$
.
 $2x + y - 4z = -1$,
 $6x - 7y + 8z - 7$.

(4) 4584

7. (i) The production function of a firm is given by:

Q
$$8LK - L^2 - K^2$$
, $L \ge 0$, $K \ge 0$.

Find the marginal productivities of Labour and Capital.

Also show that:

$$L\frac{\partial Q}{\partial L} + K \cdot \frac{\partial Q}{\partial K} = 2Q.$$

(ii) Use graphical method to solve the following linear programming problem: 5

Maximize: Z = 10x - 6y

Subject to the constraints:

$$3x + y \le 12$$
,

$$2x + 5v \leq 34,$$