Your Roll No.

B.A. Programme/III

Δ

OPERATIONAL RESEARCH

(T)

Paper III - Operational Research-II (Admissions of 2004 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer any six questions.

All questions carry equal marks.

 The data for a PERT chart is given in the following table:-

Activity	Three time Estimates					
	(in Days)					
1 – 2	2	4	6			
1 – 3	6	6	6			
1 – 4	6	12	24			
2 - 3	2	5	8			
2 – 5	11	14	23			
3 – 4	15	24	45			
3 – 6	3	6	9			
4 – 6	9	. 15	27			
5 – 6	4	10	16			

- (a) Draw the network.
- (b) Calculate the expected length of project and its variance.
- (c) What is the probability that the project duration will exceed 60 days?
- 2. The following table gives the details of activities and other data for a project:

Activity _	Nori	mal	Crash		
	Time	Cost	Time	Cost	
1 – 2	4	600	3	800	
1 – 3	2	400	2	400	
1 – 4	5	750	4	900	
2 – 3	7	400	5	600	
2 – 5	7	800	6	1000	
3 – 5	2	500	1	650	
4 – 5	5	600	4	850	

Here durations are in days and it is given that indirect cost per day for the project is Rs. 200/-.

- (a) Draw the Network of the project.
- (b) Find Normal project completion time and cost.
- (c) Find optimal project completion time and the minimum cost.
- 3. Describe Dynamic Programming Approach for solving multi stage decision problems.

4. State Bellman's Principle of optimality and use it to solve

Max
$$Z = y_1^2 + y_2^2 + y_3^2$$

subject to $y_1 \cdot y_2 \cdot y_3 = 6$
 y_1, y_2 and y_3 are positive integers.

- 5. (a) Define Reliability Function, Hazard Rate function and MTBF.
 - (b) Derive failure rate and MTBF for the system with failure time following
 - (i) Weibull distribution
 - (ii) Gamma distribution
- 6. Describe the replacement policy for the equipment which deteriorates gradually with time and the value of money does not change with time.
- 7. What is an Integer Programming Problem? Describe various methods for solving an Integer Programming Problem.
- 8. Solve the following all-Integer Programming problem by Gomory's cutting plane Algorithm.

Max
$$Z = x_1 + 4x_2$$

s.t.
 $2x_1 + 4x_2 \le 7$

$$5x_1 + 3x_2 \le 15$$

 $x_1, x_2 \ge 0$ and are integers.

- 9. (a) Define Flow shop and job shop sequencing problems.
 - (b) Solve the following seven job/two machine sequencing problem where the technological ordering of each job is same. Determine the optimal sequence of jobs so that total elapsed time is minimized.

Job	Α	В	С	D	Е	F	G
Machine 1	¹ 7	11	9	9	10	12	10
Machine 2	10	10	7	14	6	10	15

Here the numbers in the above table are the processing times of the jobs on the machines in hours. Also find the idle times of the machines.

- 10. (a) Differentiate between PERT and CPM.
 - (b) Explain Solution of n-jobs/m-machines flow shop problem by Johnson's optimality rule.