[This question paper contains 2 printed pages.]

Sr. No. of Question Paper	$: 5297$	Dour Roll No................
Unique Paper Code	$: 290579$	
Name of the Course	$:$ B.A. (Prog.) III (Application Course)	
Name of the Paper	$:$ Mathematics for Social Sciences - I	
Semester	$: \mathrm{V}$	
Duration : 2 Hours		

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Questions No. $\mathbf{1}$ is compulsory and carries $\mathbf{1 5}$ marks.
3. Attempt four more questions selecting at least one question from each section. Each question carries $\mathbf{1 0}$ marks.
4. (i) If $y=\frac{\log x}{x}$, find $\frac{d y}{d x}$.
(ii) Show that the function $f(x)$ defined by

$$
f(x)= \begin{cases}5 x-4, & \text { if } 0<x \leq 1 \\ 4 x^{3}-3 x, & \text { if } 1<x<2\end{cases}
$$

is continuous at $\mathrm{x}=1$.
(iii) Find $\int_{0}^{1} \frac{1}{3 x+2} d x$.
(iv) Find $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$.
(v) Find the equation of straight line passing through points $(-1,1)$ and $(2,-4)$.

SECTION - I

2. (i) The total revenue received from the sale of x units of a product is given by $R(x)=200+\frac{x^{2}}{5}$. Find (i) the average revenue (ii) the marginal revenue.
(ii) Evaluate $\int x \sin x^{2} d x$.
3. (i) Sketch the graph of Ellipse

$$
4 x^{2}+36 y^{2}=144
$$

(ii) Find $\frac{d y}{d x}$, when $x^{3}+y^{3}=3 x y$.
SECTION - II
4. (i) Evaluate the following :

$$
\int_{1}^{4} f(x) d x, \text { where } f(x)= \begin{cases}2 x+8, & \text { if } 1 \leq x \leq 2 \\ 6 x, & \text { if } 2 \leq x \leq 4\end{cases}
$$

(ii) Find the intervals on which the function $f(x)=2 x^{3}-9 x^{2}+12 x$ is increasing or decreasing.
5. (i) If $C(x)=0.01 x^{2}+5 x+100$ is a cost function, find the average cost function. At what level of production x is there a minimum average cost? What is this minimum?
(ii) Verify Mean Value Theorem for the function $f(x)=x^{2}-4 x-3$ in the interval $[1,4]$.

SECTION - III

6. (i) Write down the Taylor's series expansion for e^{x} and compute $\mathrm{e}^{0.1}$ to three places of decimals.
(ii) If $x^{y}=e^{x-y}$, show that $\frac{d y}{d x}=-\frac{\log x}{(1+\log x)^{2}}$.
7. (i) Test for convergence the series $\sum_{n=1}^{\infty} \frac{n}{n^{3}+2}$.
(ii) Examine the concavity of the following function :
$f(x)=x^{3}-3 x^{2}+3 x-3$
