[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	$: 5274$	D
Unique Paper Code Roll No................		
Name of the Course	$: 235551$	
Name of the_Paper	: Analysis	
Semester	$: V$	
Duration : 3 Hours		Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. There are $\mathbf{3}$ sections.
3. Each section carries $\mathbf{2 5}$ marks.
4. Attempt any two parts from each question in each section.
5. Marks are indicated against each question.

SECTION I

1. (a) Prove that the union of a finite collection of closed sets in R is closed. Give an example to show that the result may not be true for an infinite collection of closed sets.
(b) Let $S=\left\{\frac{1}{n}: n \varepsilon N\right\}$. Prove that S has only one limit point, namely 0 .
(c) Let f be a continuous function defined on $[a, b]$ such that $f(a)$ and $f(b)$ are of opposite signs. Then show that, there exists some point $c \in(a, b)$ such that $f(c)=0$.
2. (a) Define a closed set. Prove that every closed interval is a closed set.
(b) Let f be a function on R defined by

$$
\begin{align*}
& f(x)=1 \text {, when } x \text { is rational and, } \\
& f(x)=-1, \text { when } x \text { is irrational } \tag{6}
\end{align*}
$$

Prove that f is discontinuous at every point of R.
(c) Define a uniformly continuous function. Show that $f(x)=x^{2}, x \in R$ is uniformly continuous on (-2,2).

SECTION II

3. (a) Define convergent sequence. Show that limit of a sequence, if exists, is unique.
(b) Prove that the sequence $\left\langle a_{n}\right\rangle$ defined by the relation

$$
\begin{equation*}
a_{1}=1, a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\ldots \ldots \ldots+\frac{1}{(n-1)!}, n \geq 2 \tag{6.5}
\end{equation*}
$$

converges.
(c) State Cauchy's Convergence Criterion for sequences. Apply it to show that the sequence $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$ defined by $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots+\frac{1}{\mathrm{n}}, \mathrm{n} \geq 1$ does not converge.
4. (a) State and prove the Cauchy's General Principle for convergence of an infinite series $\sum_{n=1}^{\infty} u_{n}$.
(b) Test for convergence any two of the following series:
(i) $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+$
(ii) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
(iii) $\sum_{n=1}^{\infty} \mathrm{e}^{-\mathrm{n}^{2}}$
(c) Define absolute and conditional convergence of an alternating series. Show that the series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$. is conditionally convergent.

SECTION III

5. (a) Prove that a bounded function f is integrable on a bounded closed interval [a,b] iff for each $\in>0$, there exists $\delta>0$ such that $U(P, f)-L(P, f)<\epsilon$, for all partitions P with $\|\mathrm{P}\|<\delta$.
(b) Discuss the integrability of the function f defined on [0,1] as follows:

$$
\begin{gather*}
f(0)=0 \\
f(x)=\frac{1}{2^{n}}, \text { if } \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}(n=0,1,2,3, \ldots \ldots \ldots . .) \tag{6.5}
\end{gather*}
$$

(c) Define Gamma function. Prove the duplication formula:

$$
\begin{equation*}
\sqrt{\pi} \Gamma(2 \mathrm{~m})=2^{2 \mathrm{~m}-1} \Gamma(\mathrm{~m}) \Gamma\left(\mathrm{m}+\frac{1}{2}\right) . \tag{6.5}
\end{equation*}
$$

6. (a) Discuss the convergence of the improper integral $\int_{0}^{\infty} x^{n-1} e^{-x} d x$.
(b) Examine the pointwise and uniform convergence of the sequence of functions $\left\langle\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\rangle$ where for each $\mathrm{n} \geq 1$,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{nx}}{1+\mathrm{n}^{2} \mathrm{x}^{2}}, 0 \leq \mathrm{x} \leq 1 \tag{6}
\end{equation*}
$$

(c) Prove that the series $\sum_{n=1}^{\infty} \frac{\sin x}{\sqrt{n}}$ is not a fourier series.

