[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	5274-A	D	Your Roll No
Unique Paper Code	:	235551		
Name of the Course	:	B.A. Programme		
Name of the Paper	:	Analysis		
Semester	:	V		
Duration : 3 Hours				Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. There are **3** sections.

:

- 3. Each section carries 25 marks.
- 4. Attempt any two parts from each question in each section.
- 5. Marks are indicated against each question.

SECTION I

- 1. (i) (a) Define supremum and infimum of a set, giving an example. $(4\frac{1}{2})$
 - (b) State the order completeness property of real numbers using supremum. (2)
 - (ii) Define an open set. Prove that every open interval is an open set. Which of the following sets are open.
 - (a)]2, ∞ [(b) [3, 4[(6¹/₂)
 - (iii) Prove that the intersection of a finite collection of open sets in ℝ is open.(6¹/₂)

P.T.O.

3.

- 2. (i) Define limit point of a set. Prove that the set Z of integers has no limit point.
 (6)
 - (ii) State the Bolzano Weierstrass Theorem. Prove that its conditions cannot be relaxed.
 (6)
 - (iii) Define a uniformly continuous function. Giving an example prove that a continuous function need not be uniformly continuous.(6)

SECTION II

(i) Prove that every convergent sequence is bounded. Justify by giving an example that the converse is not true. (4+2¹/₂)

(ii) Let $\langle a_n \rangle$ be defined as follows :

$$a_1 = 1, a_{n+1} = \frac{4 + 3a_n}{3 + 2a_n}, n \ge 1$$

Show that $\langle a_n \rangle$ converges. What is the limit of $\langle a_n \rangle$ (6¹/₂)

 $(6\frac{1}{2})$

(iii) State Cauchy's Convergence criterion for sequences. Check whether the sequence $\langle S_n \rangle$, where

$$S_n = 1 + \frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n - 2}$$

is convergent or not.

- 4. (i) Prove that every absolutely convergent series is convergent. What about the converse ? Justify. (6)
 - (ii) Test for convergence any two of the following series :

(a)
$$\sum_{n=1}^{\infty} \frac{1.2.3...n}{7.10...(3n+4)}$$

(b)
$$\sum_{n=1}^{\infty} \left\{ \left(n^3 + 1\right)^{1/3} - n \right\}$$

5274-A

(c)
$$\frac{\sin\sqrt{1}}{1} - \frac{\sin\sqrt{2}}{2^{3/2}} + \frac{\sin\sqrt{3}}{3^{3/2}} - \dots$$
 (6)

(iii) Let $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be two positive term series such that $\lim_{n \to \infty} \frac{u_n}{v_n} = \ell$ (ℓ is finite and non-zero), then prove that $\sum u_n$ and $\sum v_n$ converge or diverge together. (6)

SECTION III

5. (i) Define Riemann integrability of a bounded function f on a bounded closed interval [a, b]. Show that the function f defined on [a, b] as

 $f(x) = \begin{cases} 1 & \text{if x is rational} \\ -1 & \text{if x is irrational} \end{cases}$

is not Riemann integrable.

- (ii) Prove that if f is a monotonic function on a bounded closed interval [a, b], then it is integrable on [a, b].
- (iii) Show that the function f defined on [0,1] as f(x) = [x] is integrable and

evaluate
$$\int_{0}^{3} f(x) dx$$
. (6½)

6. (i) Test the uniform convergence of the series

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}, x \in \mathbb{R}, (p > 1)$$
(6)

(ii) (a) Find a fourier series of the function

;

$$f(x) = \begin{cases} -1 & -\pi \le x \le 0\\ 1 & 0 \le x \le \pi \end{cases}$$
(3)

P.T.O.

 $(6\frac{1}{2})$

(b) Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{x^n}{\underline{|n|}}$$
(3)

(iii) Discuss the convergence of the improper integral

$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
 (6)