St. No. of Question Paper; 516 Unique Paper Code 235381

Name of the Paper : Mathematics

Name of the Course : B.Com.(Hons.)

Semester

: III

Duration

: 3 Hours

Maximum Marks: 75

E

Q1. Attempt any four parts:

- a) Find the equation of a line which passes through (-1, 2, 4) that is parallel to 6
- b) Determine whether the set of vectors

$$S = \{(2, 1, 4), (1, -1, 2), (3, 1, -2)\}$$

form a basis for \mathbb{R}^3 .

c) Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that: T(1,0,0) = (1,2,-1)6

$$T(1,0,0) = (1,2,-1)$$

 $T(0,1,0) = (1,0,2)$
 $T(0,0,1) = (1,1,3)$

Find T (2, -1, 3)

- d) Find the standard matrix representing the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as anti-clockwise rotation through $\frac{\Pi}{3}$.
- e) Find the characteristic equation of the matrix:

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$

Q2. Attempt any four parts:

a) Find the first five terms of the following sequences:

i.
$$a_1 = 2$$
, $a_{n+1} = \frac{(-1)^{n+1} a_n}{2}$
ii. $y_1 = 2$, $y_1 = \frac{1}{2}$

i.
$$a_1 = 2$$
, $a_{n+1} = \frac{(-1)^{n+1} a_n}{2}$
ii. $y_1 = 2$, $y_{n+1} = \frac{1}{2} (y_n + \frac{2}{y_n})$

b) Show that $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$

c) Determine whether the series:

$$\sum_{k=1}^{\infty} \left(\frac{3}{4^k} - \frac{2}{5^{k-1}} \right)$$

Converges or diverges?

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

converges to 1.

e) State limit comparison test for positive term series and use it to determine

$$1 + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots$$

Q3. Attempt any two parts:

- a) Write the general forms of the following statements of 'SPARKS'

6

- Assignment
- If then else ii.
- iii. Case
- iv. While
- b) Find the greatest common division of

4

4

c) Define 'Big Oh' notation. Show that:

$$f(n) = 8n^4 + 6n^2 - 5n - 5 = O(n^4)$$

Q4. Attempt any three parts:

a) Define a sub-graph of a graph G. Draw three sub-graphs of the following

b) Find the graph represented by the following adjacency matrix:

$$\begin{bmatrix} 0 & 2 & 3 & 0 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

c) Use Breadth-First-Search algorithm to find a spanning tree for the graph:

d) Find a minimal spanning tree for the following graph:

Q5. Attempt any two parts:

a) Define the following terms:

3.5

3.5

4

- Zero Sum Game i.
- Pure Strategy ii.

b) Two players A and B match coins. A wins 8 units of value if two coins turn both heads and 1 unit of value if two coins turn both tails. B wins 3 units of value when the two coins do not match. Given the choice of being A or B, which one would you choose and what would be your strategy? 3.5

c) Solve the following game using the notion of Dominance whose pay-off

$$\begin{bmatrix} 1 & 3 & 2 & 2 \\ 7 & -5 & 1 & 2 \\ 4 & -1 & 2 & 2 \\ 3 & -2 & 2 & 2 \end{bmatrix}$$