This qu	estion	paper	contains	4+1	printed	pages
---------	--------	-------	----------	-----	---------	-------

•	i							
Roll	No.					,		

S. No. of Question Paper : 5529

Unique Paper Code

: 235381

F

Name of the Paper

: Mathematics (CH-3.5)

Name of the Course

: B.Com. (Hons.)

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all the questions as per the directions questionwise.

- 1. Attempt any four parts:
 - (a) Prove that the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T(x, y) = (x, y, 1)$$

is not a linear transformation.

6

(b) Determine whether the set of vectors

$$S = \{(1, 2, 3), (0, 1, 1), (1, 0, 0)\}$$

forms a basis for \mathbb{R}^3 ?

(

(c) Find the standard matrix for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (y, z, x).$$

(d) Find the eigenvalues of the matrix:

6

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

(e) Find the eigenspace of the matrix:

6

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

2. Attempt any four parts:

(a) Find the general term of the following sequences:

6

(i)
$$\frac{2}{5}$$
, $\frac{4}{11}$, $\frac{6}{17}$, $\frac{8}{23}$,

(ii)
$$1, \frac{-1}{3}, \frac{1}{9}, \frac{-1}{27}, \dots$$

(iii)
$$\frac{2}{3}$$
, $\frac{5}{6}$, $\frac{10}{11}$, $\frac{17}{18}$,

(b) Find the limit of the following sequence:

$$\left\{\frac{1+2+3+....+n}{n^2}\right\}_{n=1}^{\infty}.$$

(c) Prove that the series:

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$$

is not convergent.

Find the sum of the series $\sum u_n$, where

6

$$u_n=\frac{5}{2^n}+\frac{1}{3^n}.$$

State limit comparison test for positive term series and use it to determine whether the (e) following series converges:

$$\frac{1}{3} + \frac{1}{5} + \frac{1}{9} + \frac{1}{17} + \dots$$

Attempt any two parts: 3.

> Define Fibonacci numbers. Write a 'SPARKS' program to print the value of the nth (a)

Fibonacci number F_n .

Find the greatest common divisor of 414 and 662. (b)

Define 'Big Oh' notation. Show that: (c)

$$f(n) = 60 n^2 + 5n + 1 = O(n^2).$$

Attempt any three parts:

What do you mean by Konigsberg Bridge problem? Explain it. (a)

Find the graph for the following adjacency matrices (b)

$$(i) \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

•	0	3	0	2
(ii) .	3	0	1	1
	0	1	1	2
	2	1	2	0

(c) Use Breadth First Search algorithm to find a spanning tree for the graph:

(d) Find a minimal spanning tree for the following graph:

- 5. Attempt any two parts:
 - (a) Define the following terms:
 - (i) Mixed strategy
 - (ii) Two-person zero-sum game.

3.5

- (b) Two players A and B match coins. Suppose A wins one unit of value when there are two heads, wins nothing when there are two tails and loses $\frac{1}{2}$ unit of value when there is one head and one tail. Determine the optimum strategies for the players and value of the game.
- (c) For what value of α , the game with the following pay-off matrix is strictly determinable?

$$\begin{bmatrix} \alpha & 6 & 2 \\ -1 & \alpha & -7 \\ -2 & 4 & \alpha \end{bmatrix}$$