[This question paper contains 3 printed pages.]

Your Roll No.

4686

B.Sc. (G) / I / NS

AS

MATHEMATICAL SCIENCES (Operational Research)

Paper II - Optimization - I

Time: 3 Hours Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

All questions carry equal marks.

- (a) Comment on the statement: "OR advocates a systems approach and provides a quantitative analysis for decision-making".
 - (b) Check the convexity of the following sets:

(i)
$$\dot{X} = \{x, x_2\} / x_1 x_2 \le 1; x_1, x_2 \ge 0\}$$

(ii)
$$X = \{x_1, x_2\}/x_1^2 + x_2^2 \ge 4; x_1, x_2 \ge 0\}$$
 (6)

- (a) Prove that the objective function of a Linear Programming Problem achieves its optimum value at one the extreme points of the convex set of the feasible solutions of the LPP.
 - (b) Find all possible basic feasible solutions for the following set of equations:

P.T.O.

$$2x_1 + 3x_2 + x_3 + 4x_3 = 8$$

 $x_1 - 2x_2 + 6x_3 - 7x_4 = -3$
Is any bfs degenerate also? (4)

- 3. (a) State and prove strong duality theorem in duality theory. (7)
 - (b) Write the dual for the following LPP:

Min
$$Z = 2x_1 + 3x_2 + 5x_3$$

s.t.
 $2x_1 + 5x_2 + 3x_3 \ge 2$

$$3x_1 + 7x_2 - x_3 = 3$$

 $x_1 + 4x_2 - 6x_3 \le 5$
 $x_2, x_3, \ge 0; x_1 \text{ is unrestricted}$ (4)

- 4. (a) Give the Mathematical formulation of an Assignment Problem. (4)
 - (b) Solve the following Transportation problem:

From To	D,	D ₂	D_3	Supply
S ₁	8-	5	6	120
S_2	13	10	12	80
S 3	3	9	10	80
Demand	150	80	40	(7),

- (a) Give the general form of an IPP. Name the methods available to solve an IPP.
 (3)
 - (b) Solve the following all IPP

Max
$$Z = 3x_1 + 12x_2$$

s.t.

$$2x_1 + 4x_2 \le 7$$

$$5x_1 + 3x_2 \le 15$$

$$x_1, x_2 \ge 0$$
 & are integers

- 6. (a) Write a short note on phenomenon of degeneracy in LPP. (5)
 - (b) Solve the following LPP by 2-phase Simplex Method:

Max
$$Z = 15x_1 + 25x_2$$

s.t.

$$7x_1 + 6x_2 \ge 20$$

$$8x_1 + 5x_2 \le 30$$

$$3x_1 - 2x_2 = 18; x_1, x_2 \ge 0$$

- 7. (a) Give the outline of Simplex Method. (5)
 - (b) Discuss the effect of discrete changes in the requirement vector b on the optimal solution of a LPP. (6)

(6)

(8)