Your	Roll	No.	***************************************

B.Sc. (G) / I

AS

CHEMISTRY— Paper I

(Inorganic Chemistry)

Time: 2 hours

Maximum Marks: 25

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all. Question No. 1 is compulsory.

- 1. (a) Alkali metals are strong reducing agents. Explain.
 - (b) Why does nitrogen form a stable N₂ whereas phosphorus exists as P₄?
 - (c) While SO₂ has net dipole moment, CO₂ has zero dipole moment. Discuss.
 - (d) What is physical significance of ψ and ψ^2 ? 2,2,2,1
- (a) Fluorine is more electronegative than chlorine but Cl has higher electron affinity. Explain.
 - (b) Why do LiX (X-Cl, Br, I) flout radius ratio rule?
 - (c) Why are ionic crystals hard and brittle while metals are hard, malleable and ductile? 2,2,2

3. (a) Using VSEPR theory, predict the shapes of the following:

ClF₃, XeF₄

- (b) Why are half filled and fully filled orbitals more stable?
- (c) Using MO theory compare the stability of NO⁺,NO and NO⁻.2,2,2
- 4. (a) The strength of hydrohalic acids is in the order HI>HBr>HCl>HF which is against electronegativity values of halogens. Explain.
 - (b) How does the conductance of metals and semiconductors vary with temperature?
 - (c) Arrange the following in increasing order of acidic character, giving reasons:

HClO, HBrO, HIO. 2,2,2

- 5. (a) According to Heisenberg's Uncertainty Principle, why is it impossible to measure simultaneously the exact position and momentum of a fast moving electron?
 - (b) Draw radial probability distribution curves for 4p and 4d orbitals.
 - (c) Establish the relationship between polar coordinates and cartesian co-ordinates. 2,2,2

- 6. Write short notes on any two of the following:
 - (i) Resonance
 - (ii) Metallic Bonding (Band Theory)
 - (iii) Lattice Energy.

3,3

٨