[This question paper contains 2 printed pages.]

4719

Your Roll No.

B.Sc. (G) / I

AS

CHEMISTRY - Paper III

(Physical Chemistry)

Time: 2 Hours

Maximum Marks: 25

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any four questions.
Use of Calculator is allowed.

- (a) In a measurement of viscosity by Ostwald's viscometer at 20.2°C, water takes 30 seconds to flow between the upper and lower marks while the flow of another liquid of density 1.5 g/c.c. takes 35 seconds. Taking density of water at 20.2°C to be 0.9982 g/c.c., calculate the viscosity of the other liquid. (Viscosity of water at this temperature is 10 centipoise.)
 - (b) Calculate the r.m.s. velocity of oxygen molecules at 27°C. (2)
 - (c) The resistance of a N/10 solution is found to be 2.5×10³ ohms. Calculate the equivalent conductance of the solution if the all constant = 1.15 cm⁻¹.

(2)

P.T.O.

	•	
2.	(a) Explain the term co-efficient of viscosity.	(2)
	(b) Describe Ostwald's viscometer method for	the
	determination of viscosity of a liquid.	(4)
3.	(a) What is meant by transport number of an io	n ?
		(2)
	(b) Describe moving boundary method for	the
	determination of transport numbers.	(4)
4.	(a) What is a buffer solution?	(2)
	(b) Derive Henderson equation for the pH of an ac	idic
	buffer mixture.	(4)
5.	Write short notes on any two:	
	(a) Law of rational indices	
	(b) Kammerlingh-Dunes virial equation of state real gases	for
	(c) Law of Equipartion of Energy (2	×3)