5008

Your Roll No.....

B.Sc. (G) / I

В

MATHEMATICS - Paper II

(Calculus)

Time: 3 Hours

Maximum Marks 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.'
Attempt any two parts from each question.

- (a) If a function f defined on an internal I is derivable
 at a point x = c ∈ I, then prove that f is continuous
 at x = c. Is the converse true? Give reasons in
 support of your answer. (4½)
 - (b) Find a non-zero value for the constant K that makes the function:

$$f(x) = \begin{cases} \frac{\tan Kx}{x} & \text{when } x < 0 \\ 3x + 2K^2 & \text{when } x \ge 0 \end{cases}$$

continuous at the point x = 0. (4½)

(c) Examine if $\lim_{x\to 0} f(x)$ exists, when

$$f(x) = \frac{(x^2 + 2)|x|}{x}$$
 (4½)

P.T.O.

2. (a) If $y = e^{m \sin^{-1} x}$, then prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$$

where y_n denotes n^{th} ordered derivative of y with respect to x. (4½)

(b) State Euler's theorem for a homogeneous function of x and y.

If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, then prove that
$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u. \tag{4}\%$$

(c) Find the nth derivative of

$$y = e^{ax} \cos(bx + c) \tag{41/2}$$

- 3. (a) Find the angle of intersection of the curves $y^2 = 2x$ and $x^2 + y^2 = 8$ at a point of intersection. (4½)
 - (b) Show that the curves

$$r = a(1 + \cos\theta)$$
 and

$$r = b(1 - \cos\theta)$$

intersect each other orthogonally. (4½)

(c) If p_1 and p_2 be the length of perpendicular from the origin on the tangent and normal to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ respectively, then prove that $4p_1^2 + p_2^2 = a^2$. (4½)

4. (a) Find all the asymptotes of the curve:

$$x^3 + x^2y - xy^2 - y^3 - 2x^2 + 2y^2 + x + y + 1 = 0$$
(4½)

(b) Determine the position and nature of the double points on the curve:

$$x^3 + 2x^2 + 2xy - y^2 + 5x - 2y = 0$$
 (4½)

(c) Trace the curve:

$$8a^2y^2 = x^2(a^2 - x^2), \ a > 0$$
 (4½)

5. (a) Evaluate:

(i)
$$\int \frac{dx}{\cos(x-a)\sin(x-b)}$$
 (2)

(ii)
$$\int \frac{dx}{\sin^{\frac{3}{2}} x \cos^{\frac{5}{2}} x}$$
 (2½)

(b) Evaluate:

(i)
$$\int_0^{\frac{\pi}{2}} \sin 2x \log \tan x \, dx$$
 (2)

(ii)
$$\int_0^{\frac{\pi}{2}} \log \left(\tan x + \cot x \right) dx$$
 (2½)

(c) If $u_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$, then prove that

$$u_n + u_{n-2} = \frac{1}{n-1}, n > 1$$

and hence deduce the value of u₅.

P.T.O.

 $(4\frac{1}{2})$

- 6. (a) Find the area enclosed by the curve $r = a \cos 2\theta$ and the radius vectors $\theta = 0$ and $\theta = \frac{\pi}{2}$. (5)
 - (b) Show that the length of the arc of the curve $x = e^{0}\sin\theta$, $y = e^{\theta}\cos\theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$ is $\sqrt{2}\left(e^{\frac{\pi}{2}} 1\right)$. (5)
 - (c) Find the volume of the solid generated by loop of the curve y²(a + x) = x²(3a x) as it revolves about x-axis.