This	question	paper	contains	4+2	printed	pages]
------	----------	-------	----------	-----	---------	--------

Your Roll No.

8058

B.Sc. (G)/I

D

MATHEMATICS—Paper II

(Calculus)

Time: 3 Hours

Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt All questions.

All questions carry equal marks.

Attempt any two parts from each question.

- 1. (a) Use (ε, δ) definition to prove that :
 - (i) $\lim_{x\to 0} x \sin \frac{1}{x} = 0$
 - (ii) $\lim_{x\to x}\frac{1}{x^2}=0.$

(b) Show that the function defined by :

$$f(x) = |x| + |x-1|$$

is continuous at x = 0 and x = 1 but not differentiable at these points.

- (c) Prove that if the functions f and g are continuous at a point then f + g is also continuous at that point what about its converse? Justify your answer.
- 2. (a) Find the nth derivative of:

$$y = \tan \frac{2x}{1 - x^2}.$$

(b) If

$$y = \log(x + \sqrt{(1+x^2)}),$$

then show that :

$$(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$$
.

(c) If

$$u = f(x + ay) + g(x - ay),$$

then prove that:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial y^2} \,.$$

3. (a) The tangent at any point on the curve

$$x^3+y^3=3axy\,,$$

cuts off lengths p and q on the co-ordinate axes, show

that :

$$p^{-\frac{3}{2}} + q^{-\frac{3}{2}} = \frac{1}{\sqrt{2}} a^{-\frac{3}{2}}.$$

(b) Show that the sub-tangent at any point of the curve :

$$x^m y^n = a^{m+n}$$

varies as the abscissa.

(c) Show that the curves

$$r^m = a^m \cos m\theta$$
, $r^m = a^m \sin m\theta$,

cut each other orthogonally.

4. (a) Find the asymptotes of the curve :

$$x^3 + y^3 = 3axy.$$

(b) Trace the curve:

$$y(a^2+x^2)=a^2x.$$

(c) Find the equations of the tangent at (2, 1) to the curve :

$$(x-2)^2 = y(y-1)^2$$

and show that this point is a node.

5. (a) Evaluate:

(i)
$$\int \frac{(x+2)}{\sqrt{(x^2+3x+1)}} dx$$

(ii)
$$\int \frac{dx}{\sin x + \sin 2x}$$
.

(b) Obtain the reduction formula for $\int \sin^n x dx$ where n being positive integer and hence evaluate:

$$\int_{0}^{\frac{\pi}{2}} \sin^6 x dx.$$

(c) Prove that:

$$\int_{0}^{\pi} \frac{x \tan x dx}{\sec x + \tan x} = \frac{\pi}{2} (\pi - 2).$$

6. (a) Find the area of the region enclosed by the parabola $y = 2 - x^2 \text{ and the line } y = -x.$

(b) Find the volume of solid of revolution of the cardioid :

$$r = a(1 - \cos\theta)$$

is revolved about initial line.

(c) Rectify the curve:

$$x = a(t + \sin t), y = a(1 - \cos t).$$