[This question paper contains 4 printed pages.]

4693

Your Roll No.

B.Sc. (G)/II

AS

MATHEMATICS - Paper III

(Geometry)

Time: 3 Hours Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions, selecting two parts from each of the questions 1 to 5.

1. (a) Show that two circles

$$x^{2} + y^{2} + 2g_{1}x + 2f_{1}y + c_{1} = 0$$
 and
 $x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0$ are
orthogonal if

$$2g_1g_2 + 2f_1f_2 = c_1 + c_2 (9)$$

(b) The Radical Axis of coaxial system of circles is the line x + y = 0, if one of the members is the unit circle with centre at the origin, then find its limiting points or points of intersection; which ever are real.

(c) Find the equation of a circle which is member of a coaxial system determined by the circles

$$x^2 + y^2 + 2x = 0$$
 and
 $x^2 + y^2 - 2x - 4y + 1 = 0$
and passing through the point $(1, -1)$.

2. (a) If normal at a point (at², 2at) of the parabola $y^2 = 4ax$ meets it again at (at'², 2at') prove that

$$t' = -\left(t + \frac{2}{t}\right). \tag{9}$$

- (b) Prove that the locus of the middle points of a system of parallel chords of a hyperbola is a straight line.
- (c) Find locus of poles of the tangents to the circle $x^2 + y^2 = 4a^2$ with respect to the parabola $y^2 = 4ax$.
- 3. (a) Find the locus of a point from which two perpendicular tangents can be drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. By what name is this curve known?
 - (b) Find the locus of midpoints of chords of hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \quad \text{which are tangent to the circle}$ $x^2 + y^2 = r^2.$

- (c) Tangent at the point P(9, 4) on the hyperbola $\frac{x^2}{45} \frac{y^2}{20} = 1$ meets its asymptotes at points Q and R. Find coordinates of Q and R. (9)
- 4. (a) Obtain the equation of the sphere circumscribing the tetrahedron whose faces are

$$x = 0, y = 0, z = 0; \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$
 (9)

(b) Find the equation of the sphere containing the circle

$$x^2 + y^2 + z^2 + 2x - 4y + 6z + 5 = 0$$
; $x + 2y + 3z - 8 = 0$ as a great circle.

(c) Find the limiting points of the coaxial system of spheres determined by the spheres

$$x^{2} + y^{2} + z^{2} + 3y - 3z + 6 = 0$$

and $x^{2} + y^{2} + z^{2} + 2x + 4y - 2z + 6 = 0$

- 5. (a) Find the equation of the cone with vertex at (4, 3, 5) which passes through the circle $x^2 + y^2 + z^2 = 4$ x + y = 0. (9)
 - (b) Find the points of intersection of the line

$$\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z-7}{2}$$
 with the cone
$$11x^2 - 5y^2 + z^2 = 0.$$

(c) Find the equation of the cylinder whose generators intersect the curve

$$x^{2} + y^{2} + z^{2} = 9$$
; $x + y + z - 2 = 0$ and are parallel to the line

$$\frac{x}{2} = \frac{y}{-1} = \frac{z-1}{-2}$$

 Trace any one of the following conics giving essential details

(i)
$$x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$$

(ii)
$$25x^2 - 120xy + 144y^2 - 2x - 29y - 1 = 0$$
 (10)