[This question paper contains 3 printed pages.]

5010

Your Roll No.....

B.Sc. (G) / II

В

MATHEMATICS - Paper IV

(Vector Calculus and Differential Equations)

Time: 3 hours

Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

(a) Prove that

$$\vec{\nabla} \times (\vec{F} \times \vec{G}) = (\vec{\nabla} \cdot \vec{G}) \vec{F} - (\vec{\nabla} \cdot \vec{F}) \vec{G}$$

$$+ (\vec{G} \cdot \vec{\nabla}) \vec{F} - (\vec{F} \cdot \vec{\nabla}) \vec{G}$$
(4½)

- (b) If $\vec{F}(t)$ is derivable function of scaler t, prove that the necessary and sufficient condition for $\vec{F}(t)$ to have constant magnitude is \vec{F} , $\frac{d\vec{F}}{dt} = 0$. (4½)
- (c) Find the equation for the plane pendicular to the vector $\vec{A} = 2\vec{i} + 3\vec{j} + 6\vec{k}$ and passing through the terminal point of the vector $\vec{B} = \vec{i} + 5\vec{j} + 3\vec{k}$.

P.T.O.

2. (a) Solve:
$$(x + 2y - 1)dx = (x + 2y + 1)dy$$
 (4½)

(b) Solve:
$$4y^2p^2 + 2pxy(3x+1) + 3x^3 = 0$$
 (4½)

(c) Solve:
$$x(1-x^2)y^2\frac{dy}{dx} + (2x^2-1)y^3 = ax^3$$
 (4½)

3. (a) Solve:
$$(D^2 - 1)_v = e^{-x} sine^{-x} + cos e^{-x}$$
 (5)

(b) Solve:
$$(D^2 + a^2)_v = \sec ax$$
 (5)

(c) Prove that the Wronskian of any two solutions of the linear second order homogeneous differential equation

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$$

where $a_0(x) \neq 0$ and $a_0(x)$, $a_1(x)$ and $a_2(x)$ are continuous $\forall x \in (a, b)$ are linearly dependent iff their Wronskian is identically zero. (5)

4. (a) Solve:

$$\cos^2 x y'' - 2 \sin x \cos x y' + \cos^2 x y = 0$$
 (4½)

(b) Solve:

$$xy'' - (2x+1)y' + (x+1)y = (x^2+x-1)e^{2x}$$

$$(4\frac{1}{2})$$

(c) Solve:
$$(x^3 - x)y'' + y' + n^2x^3y = 0$$
 (4½)

5. (a) Solve: $(x+2)y'' - (2x+5)y' + 2y = (x+1)e^x$ by the method of variation of parameters. (4½)

(b) Solve an initial value problem

$$y'' - 2y' - 3y = 2e^x - 10 \sin x$$

 $y(0) = 2$
 $y'(0) = 4$

by the method of undetermined coefficients. (4½)

(c) Solve:

$$x^2y'' - xy' + y = \log x - (\log x)^2$$
 (4½)

6. (a) Solve the following simultaneous differential equations:

$$\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t$$

$$\frac{dx}{dt} - \frac{dy}{dt} + 2x = 4\cos t - 3\sin t \tag{4}$$

(b) Solve:

$$\frac{\mathrm{dx}}{1} = \frac{\mathrm{dy}}{2} = \frac{\mathrm{dz}}{5z + \tan(y - 2x)} \tag{41/2}$$

(c) Solve:

$$zy(1+4xz)dx - xz(1+2xz)dy - xy dz = 0$$
(4½)