-Your Roll No.

B.Sc. / II

JS

MATHEMATICAL SCIENCES

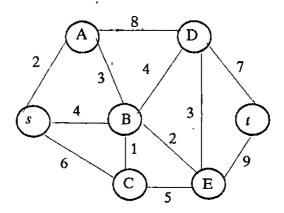
OPERATIONAL RESEARCH

Paper IV— Optimization – II

Time: 3 hours

Maximum Marks: 55

(Write your Roll No. on the top immediately on receipt of this question paper.)


Answer any five questions.

Marks are indicated against each question.

- (a) Is it correct to say that in quadratic programming problem the objective function and the constraints both should be quadratic? If not, give your comments.
 - (b) Derive the Kuhn-Tucker necessary conditions for an optimal solution to a quadratic programming problem. 7
- 2. (a) Define the following terms:-
 - (i) Network
 - (ii) Path and Chain
 - (iii) Cut
 - (iv) Static flow in a network.

4

(b) Find the shortest path (by complete enumeration method) from s to t in the following network. Numbers on arcs represent actual distances between the corresponding pair of nodes.

3. A small project is composed of seven activities whose time estimates are listed in the following table:

Estimated Duration (Weeks)

			•
Activity	Optimistic	Most likely	Pessimistic
1-2	1	1	7
1-3	1	4	7
1-4	2	2	8
2-5	1	1	1
3-5	2	5	14
4-6	2	5	8
5-6	3	6	15

- (i) Find the expected duration and variance of each activity.
- (ii) Calculate the expected project completion time and its variance.
- (iii) Determine the probability that the project will be completed in 19 weeks and what due date has 90% chance of being met.
- 4. The table below provides costs and time estimates of seven activities of a project.

Activity (I–J)	Time Estimates (Weeks)		Direct Cost Estimates (Rs.'000)	
	Normal	Crash	Normal	Crash
1-2	2	1	10	15
1-3	8	5	15	21
2-4	4	3	20	24
3-4	1	1	7	7
3-5	2	1	8	15
4-6	5	3	10	16
5-6	6	2	12	36

- (i) Determine the critical path and the normal duration and normal cost of the project.
- (ii) Crash the activities so that the project completion time reduces to 9 weeks.
- 5. Define job-shop and flow-shop problem.

Solve the following 2-jobs 4 machines job-shop problem. The technological ordering of machines for job 1 is ABCD and for job 2 is DBAC. The processing times of two jobs on the four machines are:

	A	В	С	D
Job 1	2	. 4	5	. 1
Job 2	2	5 .	3	6

11

- 6. '(a)' Explain the two person zero-sum game. Give a suitable example.
 - (b) Solve the game whose payoff matrix is given below:

Player A	Player B			
	<i>B</i> ₁	B ₂	<i>B</i> ₃	B_4
A_1	3	2	4	0
, A ₂ ,	3	4	2	- 4
A ₃	4	2	4.	0
A4	0	4	0	8.

7

- 7. (a) What is the dynamic recursive relation? Describe the general process of backward recursion.
 - (b) Use dynamic programming to show that:

$$\sum_{i=1}^{n} P_i \log P_i$$

subject to the constraint

$$\sum_{i=1}^n P_i = 1$$

and $P_i \ge 0$ for all i

is minimum when
$$P_1 = P_2 = ... = P_n = 1/n$$
.

5

- 8. (a) Define the following terms:
 - (i) Earliest starting time
 - (ii) Latest starting time.

4

8038

(b) A salesman has to visit five cities, A, B, C, D and E. The distances (in 100 km) between five cities are given as follows:

To City

	A	В	C	D	E
A	- .	17	16	18	14
В	17	-	18	15	16
C	16	18		19	17
D	18	15	19	-	18
E	14	16	17	18	-

From City

Determine the optimal tour.

.7