This question paper contains 4+2 printed pages]

Your Roll No.

109

B.Sc. (G)/II

 \mathbf{C}

Mathematics-Paper III

(Geometry)

Time: 3 Hours Maximum Marks: 55

(Write your Roll No on the top immediately on receipt of this question paper.)

Attempt All questions,

selecting two parts from each question.

1. (a) Show that two circles:

$$x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$$
 and

$$x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$$
 are

orthogonal if

$$2g_1g_2 + 2f_1f_2 = c_1 + c_2.$$

(2)

(b) The Radical Axis of coaxial system of circles is the line:

$$x + y = 0$$

if one of the members is the unit circle with centre at the origin, then find its limiting points or points of intersection; whichever are real.

(c) Find the equation of circle which is member of a coaxial system determined by the circle:

$$x^2 + y^2 + 2x = 0$$
 and

$$x^2 + y^2 - 2x - 4y + 1 = 0$$

and passing through the point (1, -1) 9

2. (a) If normal at a point $(at^2, 2at)$ of the pirabola $y^2 = 4ax$ meets it again at $(at'^2, 2at')$ prove that:

$$t' = -\left(t + \frac{2}{t}\right).$$

(3)

- (b) Prove that the locus of the middle points of a system of parallel chords of a hyperbola is a straight line.
- (c) Find locus of poles of the tangents to the circle:

$$x^2 + y^2 = 4a^2$$

with respect to the parabola $y^2 = 4ax$.

- 3. (a) Find the locus of a point from which two perpendicular tangents can be drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$; By what name is this curve known?
 - (b) Find the locus of midpoints of chords of hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ which are tangent to the circle:

$$x^2 + v^2 = r^2$$
.

9

(4) 109

(c) Tangent at the point P(9, 4) on the hyperbola $\frac{x^2}{45} - \frac{y^2}{20} = 1 \text{ meets its asymptotes at points Q and R.}$ Find coordinates of Q and R.

4. (a) Obtain the equation of the sphere circumscribing the tetrahedron whose faces are:

$$x = 0, y = 0, z = 0$$

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

(b) Find the equation of the sphere containing circle

$$x^2 + y^2 + z^2 + 2x - 4y - 6z + 5 = 0;$$

$$x + 2y + 3z - 8 = 0$$
.

(c) Find the limiting points of the coaxial system of spheres determined by the spheres:

9

$$x^2 + v^2 + z^2 + 3v - 3z + 6 = 0$$
 and

$$x^2 + y^2 + z^2 + 2x + 4y - 2z + 6 = 0$$
.

(5)

5. (a) Find the equation of the elliptic cone with vertex at (4, 3, 5) which passes through the circle:

$$x^2 + y^2 + z^2 = 4$$

$$x + v = 0$$
.

(b) Find the points of intersection of the line:

$$\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z-7}{2}$$

with the cone

$$11x^2 - 5y^2 + z^2 = 0.$$

(c) Find the equation of the cylinder whose generators intersect the curve :

$$x^2 + y^2 + z^2 = 9$$
:

$$x+y+z-2=0$$

and are parallel to the line :

$$\frac{x}{2}=\frac{y}{-1}=\frac{z-1}{-2}.$$

9

6. Trace any one of the following conics giving essential details:

(i)
$$x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$$

(ii)
$$25x^2 - 120xy + 144y^2 - 2x - 29y - 1 = 0$$
.