This question paper contains 4 printed pages]				
Your Roll No				
197				
B.Sc. (Gen.)/II				
QUALIFYING: DIGITAL ELECTRONICS—Paper IV				
Time: 3 Hours Maximum Marks: 100				
(Write your Roll No. on the top immediately on receipt of this question paper.)				
Attempt five questions in all,				
Question No. 1 is compulsory.				
All questions carry equal marks.				
1. Attempt any five questions: 5×4=20				
(a) Do the following conversions:				
(i) (634) ₈ to binary				
(ii) (0.640625) to its octal equivalent.				

Graycode (101011) to its binary equivalent.

(iii)

P.T.O.

 $6\frac{2}{3}$

- (b) Design XNOR gate using NOR gate.
- (c) Simplify the following using De Morgan's theorem

 [((AB)'C)"D]'.
- (d) Design full substractor using half substractor.
- (e) Define:
 - (i) Power dissipation
 - (ii) Propagation delay
 - (iii) Noise margin.
- (f) Define race around condition.
- 2. (a) Reduce the expression:

$$f = A \left[B + \overline{C} \left(\overline{AB + A\overline{C}} \right) \right].$$

- (b) Design a half substractor in SOP showing K-map for difference and borrow. $6\frac{2}{3}$
- (c) Find the complement of: $6\frac{2}{3}$

$$AB + \overline{AC} + A\overline{BC}$$

(3)

3.	<i>(a)</i>	Design an OR gate (two input) using diodes	
		resistance. Explain the working using truth table.	$6\frac{2}{3}$
	(b)	Write advantages of I ² L families over other families.	$6\frac{2}{3}$
	(c)	Design NAND gate using NMOS logic family.	$6\frac{2}{3}$
4.	(a)	Design a monostable multivibrator with $T_{HIGH} = 1.1$ ms.	$6\frac{2}{3}$
	(b)	Draw the circuit of RS flip-flop and explain its wor	_
		using truth table.	$6\frac{2}{3}$
	(c)	Design a MOD-8 counter.	$6\frac{2}{3}$
5.	(a)	Design a 3-bit weighted DAC circuit. (Digital to an	alog
		coverter circuit). Also explain its working.	11
	(b)	What are the output voltages caused by each	bit
		in a 5-bit ladder if the input levels are 0 =	0V
		and I = 10 V.	9
6.	Write	short notes on any two:	2=20
	(a)	Up-Down counter	
	(b)	ROM	
	(c)	D' Morgan's theorem.	

(4)

(a) Write a program in assembly language to add two hex
 numbers by direct addressing mode.

- (b) Specify the addressing modes of the following instructions: 3.3×3
 - (i) STA 2050
 - (ii) ADI 50H
 - (iii) STAX D.