210

B.Sc. Prog./II

· C

CH-203 PHYSICAL CHEMISTRY

(Admissions of 2008 and onwards)

Time: 2 Hours

Maximum Marks : 50

Marge visa, Rio No. on the top orangisticle of the up of this question paper)

Use of scientific calculator is allowed.

Attempt four questions in all.

Question No. 1 is compulsory.

1. Explain:

752

- (a) The effect of temperature on the viscosity of gas.
- (b) For strong electrolytes, conductivity increases sharply with increase in concentration while for weak electrolytes it starts at lower values in dilute solutions and increases much more gradually.

(2) 210

- (c) Arrhenius theory is not applicable to strong electrolytes.
- (d) Solutions of electrolytes do not obey Raoult's law.
- (e) Acetate ions have lower ionic conductivity than chloride ions.
- (f) Surface tension becomes zero at critical temperature.
- (g) In phase diagram of water fusion (melting point) curve is inclined towards the pressure axis.
- 2. (a) Derive the following relations using van der Waal equation:

$$(i) \qquad P_c = \frac{a}{27b^2}$$

$$(ii) P_c V_c = \frac{3}{8} RT_c 4$$

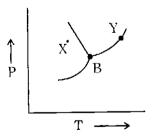
(b) For a gas A, $P_C = 45.6$ atm, $V_C = 0.0987$ dm³ mol⁻¹ and $T_C = 190.6$ K. Calculate its van der Waals constants 'a' and 'b'. Also calculate the value of compressibility factor at critical point.

(3) 240

- (c) Define "Mean free path". What is the effect of temperature, pressure and volume on the mean free path?
- 3. (a) In measuring surface tension of a liquid A by drop number method using stalagmometer for the same volume of A gave 55 drops while water gave 25 drops. Density of water is 0.996 g cm³ and density of the liquid is 0.800 g cm³ and surface tension of water is 72 dyne cm.

 Calculate the surface tension of liquid A.
 - (b) In the dissociation of HI, 20% of HI is dissociated at equilibrium. Calculate Kp for

$$HI(g) \Longrightarrow \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$$


(c) At 300 K, the vapour pressure of an ideal solution containing one mole of A and 3 moles of B is 550 mm of Hg. At the same temperature, if one mole of B is added

to this solution, the vapour pressure of solution increases by 10 mm of Hg. Calculate the V.P of A and B in their pure state.

4. (a) For the following system, determine the number of components:

NH₄Cl(s), NH₃(g), HCl(g), where the partial pressure of NH₃ is equal to the partial pressure of HCl as is the case when the gaseous mixture is formed by the sublimation of NH₄Cl(s).

(b) Consider the phase diagram for a one component system as shown:

Calculate the number of degrees of freedom at points B, X and Y.

(5) 210

(c)	The pa	artition coefficient of a solute X between chloro	en chloroform	
	and water is 0.2. Calculate the amount of solute extracted			
	from 100 ml of aqueous solution containing			
	substa	ance using 100 ml of chloroform in two	equal	
	instaln	nents.	4	
(a)	State and explain Kohlrausch's law. Illustrate how the is used for calculation of molar ionic conductances at i			
	dilution of weak electrolytes.		5	
(b)	Discuss briefly the potentiometric titration of			
	against weak base.		4	
(c)	Define	e :	3	
	(i)	Specific conductance		
	(ii)	Molar conductance and		
	(iii)	Equivalent conductance.		

5.

- 6. Write short notes on any three: 4×3
 - (a) Calomel electrode
 - (b) Glass electrode
 - (c) Liquid junction potential
 - (d) Steam distillation
 - (e) Effect of impurities on C.S.T. of phenol-water system.
 - (f) Conductometric titration (only acid-base).