This question paper contains 4+1 printed pages] Your Roll No. 231 C B.Sc. (Prog.)/H COMPUTER SCIENCE Paper -- CS-202-Computer System Architecture (Admissions of 2005 and onwards) Maximum Marks: 75 Time: Three Hours (Write your Roll No. on the top immediately on receipt of this question paper.) All questions are compulsory. Marks are indicated against each question. All parts of a question must be done together. Simplify the following Boolean function using four variable (a) 1. 5 Karnaugh Map: $F(w, x, y, z) = \sum (3, 7, 11, 13, 14, 15)$ Show how a JK flip-flop can be converted to: · 4 (b) T flip-flop (i) D flip-flop. (ii)

(2) 231

- (c) Design a sequential circuit for a two bit count down counter with 2 JK flip-flops and 1 binary input x. When x = 0 the state of the flip-flops does not change. When x = 1 the state sequences is 11, 10, 01, 00, 11 and so on.
- (a) Draw a diagram for bus system for 4 registers each of size
 4 bits.
 - (b) What is a binary counter? Draw a 4 bit synchronous binary counter using JK flip-flops. Explain its working.
 - (c) Differentiate between multiplexer and decoder. 2
- 3. (a) Convert the following numbers to the indicated base: 4
 - (i) $(10101.010)_2$ to $(--)_{10}$
 - (ii) $(6834)_{10}$ to $(--)_{16}$
 - $(iii)_1$ $(56.50)_{10}$ to $(--)_8$
 - (iv) $(C1A2)_{16}$ to $(--)_2$

(3) 231

(b) Show the hardware including logic gates for the control function that implements the statement:

$$xy' T_0 + T_1 + x'y T_2 : A \leftarrow A + 1$$

(c) Perform arithmetic operation in binary using signed 2's complement representation for negative numbers:

(i)
$$(+42) + (-23)$$

(ii)
$$(-42) - (-23)$$
.

- (d) Represent the number (+54.5)₁₀ as a floating point binary number with 24 bits. The normalized fraction mantissa has 16 bits and exponent has 8 bits.
- 4. (a) Instructions of a computer with memory capacity of 2 K words contain a 7 bit op-code, 2 bit processor register code, address of a memory operand, address of next instruction and a direct/indirect mode bit :
 - (i) How many bits must be in a word if an instruction is stored in one word?

- (ii) Show the instruction word format indicating the number of bits and functions of each part.
- (iii) What is the maximum no. of operations that can be incorporated in the computer?
- (b) An instruction at memory address (01F)₁₆ has a mode bit

 1 = 1, an operation code of BSA instruction, an address

 part (083)₁₆. The memory word at address (083)₁₆ contains

 (B8F₂)₁₆ and the contents of AC are (a937)₁₆. Write the

 fetch indirect and execute cycles and determine the contents

 of PC, Memory Address Register (MAR), data register (DR),

 AC and memory word (B8F2)₁₆ after the instruction at

 (01F)₁₆ is fetched and executed. What should be the last

 instruction of the subroutine and why?

(5)		•	231
---	---	---	--	---	-----

5. (a) Write the set of instructions to evaluate the arithmetic statement:

$$X = (A + B) * (C + D)$$

- (i) Using general register computer with three address instructions
- (ii) Using general register computer with two address instructions
- (iii) Using accumulator type computer with one address instructions.
- (b) Write short notes on any three:
 - (i) Direct Memory Access
 - (ii) Priority Interrupt
 - (iii) Programmed I/O
 - (iv) RISC
 - (v) I/O interfaces.

9