This question paper co	ontains 4+2 printed pages]	
	Your Roll No	
238		
	B.Sc. Prog./11	c
EL-201A	NALOG AND DIGITAL CIRCU	ITS
(NC -Ad	Imissions of 2005 and onwards	3)
Time: 3 Hours	Maxim	um Marks : 75
(Wrne vour Roll No on th	ne top immediately on receipt of this	s question paper.)
Attempt five	questions in all, selecting at	least
two questions fr	rom each Section 'A' and Sec	tion 'B'.
All q	uestions carry equal marks.	
	Section 'A'	
1. (a) State and	explain Thevenin's theorem.	5

(2) 238

5

(b) Derive the condition for transfer of maximum power from a source to a load.

(c) Apply Thevenin's theorem to the circuit given below and

find the current through $\stackrel{\leftarrow}{R}_1$.

- 2. (a) Describe the various methods used for transistor
 - biasing. State their advantages and disadvantages. 7
 - (b) What do you understand by class A. class B and class C power amplifiers?

(c) Fig. below shows a silicon transistor biased by feedback resistor method. Determine the operating point. Given $\beta = 100$.

- (a) With a neat sketch, explain the working of a full-wave bridge rectifier.
 - (b) Derive an expression for the efficiency and ripple factorof a full-wave rectifier.

(4) 238

Section 'B'

4. (a) Perform the operation:

$$(A^7B)_{16} = (4^76)_8 = (11011)_2 = (-1)_{16}.$$
 6

- (b) Subtract 38_{10} from 82_{10} using 2's complement method. 5
- (c) Prove the following Boolean expression:

$$\overline{(\overline{A + BC}) \cdot (\overline{AB + C})} - A + B \oplus C.$$

5. (a) Find MSP for the Boolean expression:

$$F(A, B, C, D) = \sum m(1, 3, 4, 5, 9, 10, 11) + \sum o(6, 8)$$

using Karnaugh method and implement it using only

(h) Draw and explain the circuit for a TTL logic family

NAND gate.

6

(5) 238

- 6. (a) Draw the logic circuit diagram of 4-bit adder-cumsubtractor.
 - (b) Implement a full-adder with two 4 × 1 MUXs using block diagram.
 - (c) A combinational circuit is defined by the following

 Boolean function. Design the circuit with a decoder and

 external gate:

$$\mathbf{F} = \overline{\mathbf{x}} \ \widetilde{\mathbf{y}} \ \overline{\mathbf{z}} + \mathbf{x} \overline{\mathbf{z}} + \overline{\mathbf{x}} \mathbf{y},$$
 5

- 7. (a) Draw the logic circuit diagram of a Master-Slave

 JK Flip-Flop and explain how it prevents racing? 8
 - (b) Draw the logic circuit diagram of 4-bit serial-in-serialout controlled shift-left register.

(6)

8.	(a)	Draw the logic circuit diagram of 4-bit asynchrono	u:
		UP DOWN counter and explain its operation.	7
	(<i>b</i>)	How does a static RAM cell differ from a dynam	ic
		RAM cell ?	3
	(<i>c</i>)	Draw a block diagram for Bipolar 256 - 4 ROM ar	١d
		explain its working.	5