This question paper contains 4 printed pages]

Your Roll No.

263

B.Sc. (Prog.)/II

C

MP-202: Thermal Physics and

Electromagnetism

(Admissions of 2005 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper)

Attempt any five questions.

All questions carry equal marks.

1. (a) Explain the working of a Carnot's heat engine for a perfect
gas and obtain an expression for its efficiency in terms
of sink and source temperatures.

12

P.T.O.

(2) 263

- A Carnot's engine has the same efficiency between 1227 °C and 227°C and between x°C and 0°C. Find the value of x.
- State Maxwell's law of distribution of velocities. Discuss a
 method for its experimental verification. Obtain an expression
 for the most probable speed and average speed.
 3.6.6
- Distinguish between Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Obtain an expression for the distribution function corresponding to Maxwell-Boltzmann statistics.
- 4. (a) Show that the number of normal modes of vibration per unit volume of an enclosure in the frequency range v and v+dv is given by:

$$Nvdv = \frac{8\pi v^2 dv}{c^3},$$

where c is the speed of light. Use this relation to obtain Planck's law of black body radiation. 7.4

(3) 263

P.T.O.

(h)	Starting from Planck's law of radiation, obtain Rayleigh
	Jeans and Wien's displacement law. 4
(a)	State Coulomb's law. Define electric field intensity. 2.2
(b)	State and prove Gauss's law in electrostatics. Obtain
	its differential form. Obtain an expression for the
	electric field at a point outside a uniformly charged solid
	sphere. 6,2,3
(a)	State and prove Ampere's circuital law. Discuss Maxwell's
	modification of Ampere's law. 5,5
(b)	State Faraday's law of electromagnetic induction and
	obtain it in differential form. 5
(a)	Write down the Maxwell's equations for electro-
	magnetic waves in a free space and also in a dilectric
	medium. Derive the wave equation satisfied by the
	electric field. What is Poynting vector? 3.6,3
<i>(b</i>)	Explain the term skin denth. 3

5.

6.

7.

(4) 263

- 8. Write short notes on any two of the following: $7\frac{1}{2}$
 - (a) First and the second law of thermodynamics
 - (b) Mean free path
 - (e) Thermodynamic potentials
 - (d) Fresnel relations for reflection and refraction.