[This question paper contains 4 printed pages.]

214 Your Roll No.

B.Sc. Prog. / II

C

PH-201 - PHYSICS

(Electricity, Magnetism and Electromagnetic Theory)

Time: 3 Hours Maximum Marks: ,75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all. Question No. 1 is compulsory.

1. Attempt any five:

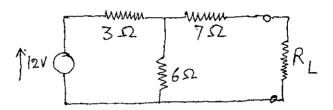
(a) If u is a scaler field at a point and \vec{V} is a vector field at that point, prove that

$$\vec{\nabla} \times (\vec{u} \, \vec{\nabla}) = (\vec{\nabla} \vec{u}) \times \vec{\nabla} + \vec{u} (\vec{\nabla} \times \vec{\nabla})$$

- (b) What is continuity equation? Derive it and discuss what does it signify?
- (c) Obtain the relation $\vec{D} = \in_0 \vec{E} + \vec{P}$ where \vec{D}, \vec{E} and \vec{P} are electric displacement, electric field intensity and electric polarisation vector respectively.

2

- (d) Calculator the magnetic field along the axis of along solenoid having 300 turns per meter when current is 10 amperes.
- (e) Prove that the charge sensitivity of a ballistic galvanometer is $\frac{2\pi}{T}$ times in current sensitivity.
- (f) Show that the divergence of magnetic field vector \vec{B} is zero everywhere.
- (g) Define the terms critical angle, numerical aperture and acceptance angle for optical fibre. (3×5)
- (a) State and prove Gauss theorem related to vector analysis.
 - (b) Find $\operatorname{curl}(\vec{a} \cdot \vec{r})\vec{a}$ where \vec{a} is a constant vector and \vec{r} is a position vector.
 - (c) Prove that vector $\vec{A} = \frac{\vec{r}}{r}$ is irrotational. (7.4.4)
- 3. (a) Show that for a conservative field line integral for a closed path is zero.
 - (b) Deduce the relation $\vec{E} = -\text{grad } V$ between electric field and electric potential.


- (c) The potential function at a point is given by $V = x(3y^2 x^2 + z)$. Find the components of electrostatic field at that point. (5.5.5)
- 4. (a) Prove $\vec{\nabla} \times \vec{B} = \vec{\mu} \cdot \vec{J}$ where $\vec{\mu}_i$ is magnetic permeability of free space and \vec{B} and \vec{J} are magnetic field and current density vectors.
 - (b) Explain what you understand by the term magnetic vector potential (A). Prove the relation

 $\vec{B} = \text{curl } \vec{A}$.

What is meant by solenoidal nature of magnetic field vector \vec{B} ? (7,8)

- (a) Write Maxwell's electromagnetic field equations for a dielectric medium and obtain the wave equation for the electric and magnetic fields.
 - (b) Prove that electromagnetic waves are transverse in nature. (8.7)
- (a) Describe with relevant theory Anderson's bridge method for finding the self inductance of a coil.

(b) Convert the linear network shown below in to Thevenin's equivalent network. (9,6)

- 7. Write short notes on any two:
 - (a) Biot-Savart law in magnetostatics
 - (b) Stokes theorem
 - (c) Polarisation of electromagnetic waves
 - (d) Ballistic galvanometer (2×7.5)