[This question paper contains 4 printed pages.]

8104-A Your Roll No. ......

B.Sc. Prog./II

BS

PH-201 - PHYSICS

(Mathematical Physics)

Time : 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt **five** questions in all. Question No. 1 is compulsory.

1. Attempt any five:

 $(3 \times 5)$ 

- (a) What is Solenoidal vector? Give examples.
- (b) Show that vectors  $5\vec{a} + 6\vec{b} + 7\vec{c}$ .  $7\vec{a} 8\vec{b} + 9\vec{c}$  and  $3\vec{a} + 20\vec{b} + 5\vec{c}$  are coplanar.
- (c) Find the volume of the Parallelopiped whose edges  $are 2\hat{i} 3\hat{j} + 4\hat{k} \; , \; \hat{i} + 2\hat{j} \hat{k} \; and \; 3\hat{i} + \hat{j} + 2\hat{k}.$
- (d) Prove  $J_n(-x) = (-1)^n J_n(x)$  where  $J_n(x)$  are the Bessel functions.

- (e) Find the Principal value of it.
- (f) Determine region in the Z-plane represented by

$$2 < |Z - i| \le 3$$

- (g) Find the Laplace Transform of  $sinh(\alpha t)$ .
- 2. (a) Prove  $(\vec{A} + \vec{B}) \cdot (\vec{B} \times \vec{C}) \cdot (\vec{C} \times \vec{A})^{1/2} = (\vec{A} \cdot \vec{B} \times \vec{C})^{2}$ .
  - (b) Evaluate 👸 (Å' n)×dŠ where

 $\vec{A} = (x + y^2)\vec{i} - 2x\vec{j} + 2yz\vec{k}$  and S is the surface of the plane 2x + y + 2z = 6 in the first octant. (5.10)

3 (a) State Gauss' Divergence theorem and evaluate \$\int \text{F} \cdot \text{n} \dS \text{ using Divergence theorem where}\$

 $\vec{F} = 4\chi z \hat{i} + y^2 \hat{j} + yz \hat{k}$  and S is the surface of cube bounded by x = 0, x - 1, y = 0, y = 1, z = 0 and z = 1.

(b) Find the volume element in terms of cylindrical coordinates. (10,5)

4. (a) Obtain the necessary conditions for a function f(z) = u(x, y) - iv(x, y) to be analytic.

3

- (b) Evaluate  $\hat{Q} = \frac{e'}{z^2 + 1} dz$  where C : |z| = 2. (10,5)
- (a) State and prove Taylor's theorem for a complex function f(z).
  - (b) Locate and identify the singularities of the function

$$f(z) = \frac{z}{(z^2 - 4)}.$$
 (10.5)

6. Using Contour integration, evaluate any two:

(i) 
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 9)(x^2 + 4)^2} dx$$

(ii) 
$$\int_{0}^{2\pi} \frac{d\theta}{1 + \alpha \cos \theta} : 0 \le \alpha \le 1$$

(iii) 
$$\int_{0}^{\infty} \frac{\cos \sin x}{x^{2} + 1} dx, m > 0$$
 (7½,7½)

7. (a) Expand in a Fourier Series

$$f(x) = x \begin{cases} 0 & (-\pi \le x < 0) \\ K & (0 \le x < \pi) \end{cases}$$

(b) Find the Laplace transform of t<sup>2</sup>sinαt. (10.5)