[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1562 C Roll No.......

Unique Paper Code : 234461

Name of the Course : B.Sc. (Prog.)

Name of the Paper : Operating Systems (CSPT-404)

Semester : IV

Duration : 3 Hours Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Question No. 1 is compulsory.
- 3. Attempt any Five from remaining seven questions.
- 4. In all six questions are to be attempted.
- 5. Marks are indicated against each question.
- 6. All parts of a question must be done together.
- 1. (a) Define the essential properties of handheld systems. (2)
 - (b) What are system calls? List any four different types of system calls. (3)
 - (c) What are the different states that a process can be in? (2)
 - (d) What is the process control block? What are its components? (4)
 - (e) Differentiate between trap and interrupt. (2)
 - (f) Why is it important for the scheduler to differentiate between I/O bound and CPU bound programs? (2)
 - (g) What do you understand by starvation of processes? Suggest a solution to handle this problem. (2)

- (h) What are cooperating processes? What are the requirements to solve critical-section problem of cooperating processes. (4)
- (i) Explain the purpose of open () and close () operations of a file. (2)
- (j) List the different layers of file system. (2)
- (2) What is the dual mode operation of the operating system? How does the dual mode feature provide greater protection for the operating system?
 - (b) List any four services provided by OS. Explain how each provides convenience to the user? (4)
 - (c) List any two ways to pass parameters to system calls. (1)
 - 3. (a) What are the main advantages and disadvantages of microkernel approach to OS design? (3)
 - (b) Describe the actions taken by the kernel to context switch between processes. (3)
 - (c) Differentiate between single threaded and muti-threaded process with the help of diagram. What are the benefits of multithreaded programming? (4)
 - 4. Consider the following processes for execution:

Process	Priority	Burst Time
P_{t}	3	10
P ₂	1	1
P ₃	3	2
$\mathbf{P}_{_{4}}$	2	. 1

The Processes are assumed to have arrived in order P_1 , P_2 , P_3 , P_4 all at time 0.

3

- (i) Draw the Gantt Charts to illustrate the execution of these processes using FCFS, SJF, non preemptive priority and RR (quantum = 1).
- (ii) Calculate the turnaround time and waiting time for each process for each scheduling algorithm in part (i).
- (iii) Which algorithm proves to be more efficient? Justify your answer. (10)
- 5. (a) Consider a paging system with the page table stored in memory.
 - (i) If a memory reference takes 200 nanoseconds, how long does a paged memory reference take?
 - (ii) If we add TLBs, and 75% of all page-table references are found in the TLB's, what is the effective memory access time? (Assume that finding a page-table entry in the TLB takes 20 nanoseconds.) (4)
 - (b) Assuming a 1-KB page size, what are the page numbers and offsets for the following address references?
 - (i) 2375

- (c) Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?
- 6. (a) What is virtual memory? What are the benefits of virtual memory systems? (3)
 - (b) What is a page fault? What steps are taken by the OS to handle page faults? (4)

1562

(c)	How many page faults occur for FCFS algorithm for the following reference
	string, for three page frames?

- 7. (a) Explain indexed allocation method for allocating blocks to a file. What are mechanisms used for deciding the size of index block? (8)
 - (b) How does ACL help in providing file protection? (2)
- 8. Write short notes on any two of the following:
 - (i) Tree structured directories
 - (ii) Acyclic graph directory structure
 - (iii) File allocation table (FAT)
 - (iv) Segmentation memory management scheme
 - (v) Contiguous Memory Allocation schemes (10)