Your Roll No.....

1478

B.A./B.Sc. (Hons.)/III

Δ

MATHEMATICS—Paper XVII & XVIII (III)

(Discrete Mathematics)

Time: 2 Hours

Maximum Marks : 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt All the questions.

Section 1

- 1. Attempt any two of the following:
 - (a) Give description of the following graph G(Fig.1)

Fig. 1

Check if:

(i) G is connected.

3

(ii) G': V' =
$$\{v_1, v_2, v_4, v_6\}$$

E' = $\{\{v_1, v_2\}, \{v_1, v_4\}, \{v_2, v_6\}, \{v_4, v_6\}\}$
is a subgraph of G. Justify.

- (b) Show that a self-complementary graph must have 4 k or 4 k + 1 vertices. 3
- (c) Define an Eulerian path in a graph. Find an Eulerian path in the given graph G (Fig. 2) between vertices A and B;

Fig. 2

2. Use nearest neighbourhood method to find a Hamiltonian circuit of minimum length for the following graph (Fig. 3), beginning at the vertex 'a'.

Fig. 3

Section II

- 3. Attempt any two of the following:
 - (a) Represent the following FSM in tabular form :

Fig. 4

3

Also draw the transition diagrams to find out the output sequences corresponding to the input sequences :

- (i) a á b a a b b a
- (ii) baaabbba.
- (b) Design a FSM with input symbols as 0, 1 and which accepts sequences having even numbers of 1's. 3
- (c) Which type/types of strings are accepted by the following FSM:

Fig. 5

4. Reduce the following FSM shown in the table, to an equivalent FSM with smallest number of states: 3½

	Inp		
State ↓	0	ı	Output ↓
A	В	Н	0
В	. F	D	0

c ,	A .	F	0
D	A	G `	. 0
E	D	B	. 1
F,	С	В	1 .
G	D .	В	1
Н	C	A	0

Section III

- 5. Attempt any two of the following:
 - (a) Show that there is no (12, 8, 3, 2, 1) configuration. 3
 - (b) Show that for a (b, v, r, k, λ) configuration

(i)
$$vr(k-1)\lambda = r^2(k-1)^2 + r(k-1)\lambda$$

(ii)
$$(k-1)\lambda = (k-1)r - (v-k)\lambda$$
.

(c) Every particle inside a nuclear reactor splits into two particles in each second. Suppose one particle is injected

into the reactor every second beginning at t = 0. How many particles are there in the reactor at the *n*th second?

6. From the seven-point plane, construct a code system of 16 words, which can detect upto 3 errors and correct upto 1 error.

Section IV

- 7. Attempt any two of the following:
 - (a) Solve the recurrence relation

3

$$a_n = 4a_{n-1} - 4a_{n-2} \ (n \ge 2)$$

$$a_0 = 1, a_1 = 3.$$

(b) Find the generating function corresponding to the discrete numeric function:

2, 0, 2, 0, 2, 0,

7) . . .

Given that $a_0 = 0$, $a_1 = 1$, $a_2 = 4$, $a_3 = 12$, satisfy

1478

the recurrence relation:

$$a_{r_{+}} + c_{1}a_{r-1} + c_{2}a_{r-2} = 0$$

determine a_r

8. Solve the recurrence relation:

(c)

$$a_n = 4a_{n-1} - 4a_{n-2} + 4^n, n \ge 2$$

with initial conditions $a_0 = 2$, $a_1 = 8$. Also, obtain an expression for the corresponding generating functions. $3\frac{1}{2}$

1478 7 1,200