This question paper contains 4 printed pages.]

Your Roll No.

1470

B.A./B.Sc. (Hons.)/III A MATHEMATICS – Unit XI (Differential Equations – II)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting one question from each Section. Each question carries equal marks.

SECTION - I

- 1. (a) Explain Charpit's method for solving the general non-linear partial differential equation of first order. 5
 - (b) Find the general solution of the partial differential equation $4\frac{1}{2}$ px(x+y) - qy(x+y) + (x-y)(2x+2y+z) = 0
- 2. (a) Show that the equations xp = yq, z(xp + yq) = 2xy are compatible and solve them.

(b) Find the complete integral of 2(y + zq) = q(xp + yq)

- 3
- (c) Using Jacobi's method, find the complete integral of the equation $3\frac{1}{2}$ $(x_2 + x_3) (p_2 + p_3)^2 + zp_1 = 0$

SECTION - II

3. (a) A function ψ satisfies the non homogeneous wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2} + f(x, y) = 0$$

and the initial conditions

$$\psi = \frac{\partial \psi}{\partial y} = 0$$
. When $y = 0$.

Apply Riemann Valterra method to show

that
$$\psi(x, y) = \frac{1}{2} \int_{T} \int f(u, v) dudv$$

where T is the triangle cut out from the upper half of the uv plane by the two characteristics through the point (x, y).

(b) Reduce the equation

41/2

$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$

to canonical form and hence solve it.

4. (a) Prove that, for the equation

5

$$\frac{\partial^2 z}{\partial x \partial y} + \frac{1}{4} z = 0$$

Green's function is

$$w(x, y, z, n) = J_0 \sqrt{(x-z)(y-\eta)}$$

where $J_0(z)$ denotes Bessel's function of first kind of order zero.

(b) Reduce the equation $\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form.

SECTION - III

5. (a) Solve the three dimensional wave equation

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}$$

by the method of separation of variables.

(b) Derive the solution of two dimensional harmonic equation

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$$
 in the region.

 $0 \le r \le a$, $0 \le \theta \le 2\pi$ satisfying the conditions :

- (i) V remains finite as $r \rightarrow 0$.
- (ii) $V = \sum_{n} C_n \cos(n\theta)$ on r = a.
- 6. (a) A gas is contained in a rigid sphere of radius a. Show that if c is the velocity of sound in the gas, the frequency of purely radial oscillations are c ζ₁/a, where ζ₁, ζ₂, ... are the positive roots of the equation tan ζ = ζ.
 - (b) Find the solution of the equation

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = 0$$
 in the region

 $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$ satisfying the boundary conditions.

- (i) $\psi = 0$ on x = 0, x = a, y = 0, y = b, z = 0
- (ii) $\psi = f(x, y) \text{ on } z = c, 0 \le x \le a, 0 \le y \le b$

5

SECTION - IV

- 7. (a) Solve by Monge's method $z(qs pt) = pq^{2}$
 - 3y) 4½

5

41/2

(b) Solve $(D - D^{2})z = \cos(x - 3y)$

8.

- (a) Solve by Monge's method 5
- (x y) $(x^2r 2xys + y^2t) = 2xy (p q)$ (b) Solve $(x^2D^2 - xyDD' - 2y^2D'^2 + xD - 2yD') z =$
 - $(x^{2}D^{2} xyDD 2y^{2}D^{2} + xD 2y^{2}D^{2} + xD^{2}D^{2} +$