This question paper contains 4 printed pages]

Your Roll No.....

1471

B.A./B.Sc. (Hons.)/111

A

MATHEMATICS—Unit 12

(Algebra-III)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt one question from each Section.

Section 1

- 1. (a) Show that a division ring has no zero divisors. 2
 - (b) Prove that if A and B are two ideals of a ring R, then
 A + B = < A ∪ B >, where, for any subset S ⊆ R,
 < S > denotes the ideal of R generated by S.
 - (c) Prove that the characteristic of a finite non-zero integral domain must be a prime number. Give example of an infinite integral domain with finite characteristic.

P.T.O.

- 2. (a) If U is an ideal of a ring R and $r(U) = \{x \in R \mid xu = 0 \ \forall u \in U\}$, prove that r(U) is an ideal of R. 2½
 - (b) If R is a division ring, then show that the centre Z(R) of R is a field.
 - (c) If A is a left ideal and B is a right ideal of a ring R, prove that:
 - (i) AB is an ideal of R
 - (ii) BA need not be even a one-sided ideal of R. 41/2

Section II

- 3. (a) Prove that any ring with unity can be imbedded into a ring of endomorphisms of some additive abelian group.

 51/2
 - (b) Let I be an ideal of a ring R such that I ≠ R. For an element
 a ∈ R, a ∉ I, if I + (a) ≈ R, prove that I is a maximal
 ideal of R and conversely.

- 4. (a) In the ring of integers, prove that an ideal is maximal if and only if it is generated by a prime number. 4½
 - (b) If D_1 and D_2 are two isomorphic integral domains, prove that their respective field of quotients F_1 and F_2 are also isomorphic.

Is the converse true? Justify.

5

Section III

- 5. (a) Prove that the ring Z[i] of Gaussian integers is a Euclidean
 domain. 4½
 - (b) If R is a commutative ring with unity such that R[x] is a principal Ideal Domain, then prove that R is a field.
 Hence or otherwise prove that Z[x] is not a principal Ideal Domain.
- 6. (a) Prove that an element 'a' in a Euclidean domain R is a unit if and only if $\delta(a) = \delta(1)$, where δ is a Euclidean valuation on R.

- (b) Let R be a commutative ring with unity and A an ideal of R. Show that:
 - (i) $\frac{R[x]}{A[x]} = \frac{R}{A}[x]$
 - (ii) Hence or otherwise prove that if A is a prime ideal of R then A[x] is a prime ideal of R[x].

Section IV

7. (a) Find the degree of the splitting field of the polynomial $x^4 + x^2 + 1$ over the field Q of rational numbers.

Find a basis of this splitting field over Q. 5

- (b) Prove that it is impossible to construct a regular septagon using ruler and compass alone.

 4½
- (a) Let L be an algebraic extension of a field K and K be an algebraic extension of a field F.

Prove that L is an algebraic extension of F. 51/2

(b) Find the degree of the splitting field of the polynomial $x^6 + 1$, over the field Q of rational numbers.