This question paper contains 4+1 printed pages]

Your Roll No.....

1472

B.A./B.Sc. (Hons.)/III

A

MATHEMATICS—Unit XIII

(Algebra--IV)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two questions from each Section.

Section 1

- Define a finite-dimensional vector space and show that any two bases of a finite-dimensional vector space have same number of elements.
 - 2. Define L(S), linear span of any subset S of a vector space V(F).
 - (a) Check whether (3, -4, 6) in the subspace of \mathbb{R}^3 (R) is spanned by vectors (1, 2, -1), (2, 2, 1) and (1, -2, 3)? $2\frac{1}{2}$

. (2)

(b) Find the two subspaces A and B of R^4 (R) such that dim A = 2, dim B = 3, dim (A \cap B) = 1.

- 3. Show that the union of two:
 - (a) Subspaces of a vector-space may not be a subspace. 2
 - (b) Let $V = \mathbb{R}^3$ (R) and W be the subspace generated by $\{(1, 2, 3)\}$. Find a subspace W_1 of V such that $V = W_1 \oplus W$.

Section II

- (a) State and prove Sylvester's law for rank and nullity of
 a linear transformation from V to W, where V is a finitedimensional vector space.
 - (b) Let T be a linear operator on a finite-dimensional vector space V and let Rank T² = Rank T. Show that Range T ∩ ker T = {0}.
- 5. Define mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ as

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

(i) Show that T is a linear operator on \mathbb{R}^3 .

Let T: V → V be a linear transformation (V is a vector space over the field F) and let β and β' be two ordered basis of V.
 Then prove that [T]_β and [T]_β are similar.

Section III

7. If W is a subspace of a finite-dimensional vector space V (F), then show that dim A (W) = dim V - dim W. Also deduce that: $4\frac{1}{2}$

$$\frac{\widehat{V}}{A(W)} \cong \widehat{W}$$

where $\hat{\mathbf{V}}$ denotes dual of V.

- 8. (a) Let V be a finite-dimensional vector space over the field F and $v_1 \neq v_2$ are in V, then prove that there exists a $f \in \widehat{V}$ such that $f(v_1) \neq f(v_2)$.
 - (b) Given $\alpha_1 = (1, 3)$ and $\alpha_2 = (2, 1)$ in \mathbb{R}^2 (R). Find $\alpha \in \mathbb{R}^2$ (R) such that

$$< \alpha$$
, $\alpha_1 > = 3$ and $< \alpha$, $\alpha_2 > = -1$,

where <, > denotes the standard inner product in R^2 . $2\frac{1}{2}$

9. Let V be the set of real-valued functions y = f(x) satisfying

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$

Prove that V is a 3-dimensional real vector space and in V define inner product $(f, g) = \int_{-\infty}^{0} fg \, dx$.

Find an orthonormal basis of V over R.

41/2

Section IV

Find the eigenvalues and bases of corresponding eigen spaces
 of the matrix.

$$A = \begin{cases} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{cases}.$$

Is A similar to a diagonal matrix? Justify.

11. Let T be a linear opeartor on R^2 , the matrix of which in the standard ordered basis is $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

- (a) Prove that the only subspaces of R² invariant under T are R² and zero subspaces.
- (b) If a diagonalizable operator has the only charateristic values 0 and 1, then is it a projection?
- 12. Let V (F) be a vector space and W_1, W_2, \dots, W_k be subspaces of V, then prove that :

 $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$ if and only if there exist k linear operators E_1, E_2, \dots, E_k on V, such that : 5

- (i) Each E_i is a projection.
- (ii) $E_i E_j = 0$ for all $i \neq j$.
- (iii) $I = E_1 + E_2 + \dots + E_k$
- (iv) The range of $E_i = W_i$ for all i.