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Attempt any twe parts from each question.
Marks are indicated against each question.

1. (a) Obtain three consecutive integers, the first of
which is divisible by a square, the second by a
cube and the third by a fourth power.. . (4)

(b) (i) If p and q' are distinct primes, prove that
p¥t+qr!=1(mod pq).

(i) Use Fermat’s Theorem to prove that if p is
" an odd prime, then
1% + 200 + 4 (p-1)*! = ~1 (mod p)
| o @22
(c) Show that (m—1)! = —1 (mod m) holds if and only

if m is prime. . : - (4)
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2.

(a)

(b)

2
Define Euler $-function. Show that
2 #(d)=n
am -
verify the above result for n =30. {4,1)
If n is’a positive integer and p a prime, then show

that exponent of the highest power of p that

divides n! is i[ik} Hence find the number of
k=1 P

 zeros with which the decimal representation of

(¢)

(a)

(b)

50! terminates. (3,2}
Prove that

nd = ntw=z

d/n

where t(n) denotes the number of posiﬁve divisors
of n. A (5}

Let ged (a,n)=1 and let a'l,‘az, - - - 2y, be the
positive integers less than n and relatively prime
to n. If a is primitive root of n, then show
that a, a% ---a%" arc congruent modulo n to
ay, 8y, = = = 3,y in° some order. Hence show that
if n has a primitive root, then it has exactly

#(d(n)) of them. (3.2)

Let p be as odd prime and ged {(a,p)=1 then
show that a is quadratic residue of p if and only
if

p-1

a—;—’ =1 (mod P) ' . (5)
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(c) Let p be an odd prime and let ged (a, p) = 1. If

(b)

- (0)

3
n denotes the number of integers in the set

S ={_a, 2a, 3a, ---- %(p—])a}-

whose remainders upon division by p exceed p/2.
Then show that

Define Perfect number. Show that an even

perfect number n ends in digit 6 or 8. 1,4 -

Defme Mersenne Numbers M_ (n > l) Show that

if p and q = 2p + 1 are primes, then either q/M,
or g/(M,+2) but not both. Further, show that

M,, is a composite number, (3,2)

Show that any prime p can be written as sum of
four squares. ‘ o (5)

(1\500)****

(afp) = 1y ®
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