This question paper contains 3 printed pages.]

Your Roll No.....

1477

B.A./B.Sc. (Hons.) / III A MATHEMATICS – Paper XVII and XVIII (ii) (Boolean Algebra)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each Section.

Marks for each part of a question are indicated.

Any of the symbol (+) and (\cdot) or (\vee) and (\wedge) may be used.

SECTION - I

- 1. (a) Define a lattice in terms of an algebra; show that it is also a partially ordered set in which each pair of elements possesses a supremum and an infimum.
 - (b) Show that there are 15 abstract lattices of six elements.

5

(c) In the lattice of natural numbers ordered by divisibility, show that the set of all powers of a fixed prime {p^r: r = 0, 1, 2, ---} is an ideal.

5

SECTION - II

2. (a) Show that the lattices isomorphic as algebras are isomorphic as partially ordered sets and conversely.

5

(b) Let H be the image of a lattice h under a homomorphism θ . If x > y in H and $a \in h$ is a pre-image of x in θ , then \exists in h at least one element b, a pre image to y and such that a > b in h.

5

(c) Show that a non modules lattice must contain a sub-lattice isomorphic with the pentagonal lattice.

5

SECTION – III

3.

(a)

(i) If a, b, c are elements of a modulae lattice with unity element u and if $a \lor b = (a \land b) \lor c = u$, then show that $a \lor (b \land c) = b \lor (c \land a) = c \lor (a \land b) = u$.

2

(ii) Show that a complemented modulae lattice is relatively complemented.

3

(b) (i) Show that a lattice is distributive iff for every set of elements a, b, c in L, the inequalities $a \land c \le b \le a \lor c$ imply that $(a \land b) \lor (b \land c) = b = (a \lor b) \land (b \lor c)$.

2

- (ii) Let B be a Boolean Algebra, show that the map $\psi(x) = x'$ is a dual automorphism of h.
- (c) Let h be a Boolean Algebra, show that $h \cong [0, a] \times [a, u], a \in h$.

SECTION - IV

4. (a) Find the Boolean Expression (in CN form) that defines a function given by:

x	у	z	f
0	0.	0	_1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1.	1	0	0
1	1	1	1

- (b) (i) Write the function $x \vee y'$ in DN form in three variables x, y and z.
 - (ii) Put the function $f = [(x \wedge y')' \wedge z'] \wedge [x' \vee z']'$ in DN form.
- (c) Draw a three terminal circuit to represent the functions:

$$f = (a \land c \land d) \lor (b \land c \land d)$$

$$g = [(a \land x) \lor (b \land x)] \land (y \lor z)$$

2

2

4

3

5