[This question paper contains 4 printed pages.]

Your Roll No.

2525

B.Sc. (G)/III

A

MATHEMATICAL SCIENCES (STATISTICS)

Paper VI - Sample Surveys and Design of Experiments

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, selecting two from Section A and B each.

Section C is compulsory.

SECTION A

- 1. (a) Explain the terms: sampled population, target population, sampling unit, frame.
 - (b) Define SRS. Derive the variance of the sample mean based on srswor. Also give an estimate of this variance. (2,5½)
- 2. (a) Prove in usual notations:

 $V(\overline{y}_{st})_{opt} \le V(\overline{y}_{st})_{prop} \le V(\overline{y}_{n})_{SRS},$ stating the assumptions made, if any.

- (b) Derive, to the first approximation, the expected value of the ratio estimator and the mean square error. (3½,4)
- (a) Compare regression estimator with ratio estimator and simple random sample mean (Assume the formulae for the variance of the estimators).
 - (b) Prove that

$$V(\overline{\overline{y}}_{n1}) \simeq \frac{S^2}{nM} \left\{ 1 + \overline{M-1} \ \rho \right\},$$

where the notations have their usual meaning. $(2\frac{1}{2},5)$

SECTION B

- 4. (a) Explain briefly the three principles of Design of Experiments.
 - (b) In an m×m LSD with model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + e_{ijk}$$

where symbols have their usual meaning, find least squares estimates of μ , α_i , β_j and γ_k . Obtain variances of $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$ and $\hat{\gamma}_k$. (3,4½)

5. (a) What is missing plot technique? Estimate a missing value in RBD.

- (b) Present the analysis of covariance for CRD. (2,5½)
- 6. (a) Explain Yates' technique for
 - (i) estimating main and interaction effects
 - (ii) calculating sum of squares due to these effects

in the case of 2³ factorial design with r replications. Also write down analysis of variance table.

(b) Define a BIBD. Prove that for a symmetric BIBD for an even number of treatments to exist, $(r-\lambda)$ must be a perfect square. (4½,3)

SECTION C

7. (a) Obtain the least squares estimates of β_0 and β_1 in the model

$$y = \beta_0 + \beta_1 \vec{x} + t$$

stating the underlying assumptions. Prove that these estimates are unbiased and have minimum variance.

(b) Write a note on test for 'Lack of Fit' in linear regression.

OR

Construct 95% confidence intervals for β_0 and β_1 as given in the model

$$y = \beta_0 + \beta_1 x + \epsilon \tag{6,2}$$