This quest	ion paper co	ontains 4 printed pag	ges] ·			
•		, ,	Roll No.			
S. No. of Q	uestion Pap	er : 1518				
Unique Paper Code		: 222263	•		E	
Name of the Paper		: Phys. II Thern	nal Physics (PHI	PT-202)		
Name of the Course		: B.Sc. (Physica	al Sciences)			
Semester		: П		•	. ,	
Duration: 3 Hours				,	Maximum	Marks : 75
. (Write your	Roll No. on the top ii	nmediately on red	ceipt of this q	question paper.)	
		Attempt	five questions in	all.		
	· :	Question	No. 1 is compul	sory.	•	• .
		All questio	ns carry equal m	narks.	• •	
	· T	he symbols used in	this paper have	usual meanin	ngs.	
1. Atten	npt any <i>five</i>	of the following:		•		5×3=15
(a)	Define extensive and intensive thermodynamic variables with examples.					
(b)	Explain the concept of temperature using Zeroth law of thermodynamics.					
(c)	Why is it not possible to obtain absolute zero? Explain.					
(d)	Derive an expansion.	expression for the	ne work done	by an ideal	l gas during	adiabatic

- (e) Using the expression of coefficient of viscosity, discuss its dependence on pressure and temperature of the gas.
- (f) Calculate the value of:

$$\gamma \left(= \frac{C_p}{C_n} \right)$$

for helium gas.

- (g) Discuss that good absorbers are good emitters.
- (a) Write down Kelvin-Planck and Clausius statements of second law of thermodynamics.
 Show that both statements are equivalent.
 - (b) A reversible heat engine converts one sixth of the heat input into work. When the temperature of the sink is reduced by 62°C, its efficiency is doubled. Calculate the temperatures of source as well the sink.
- (a) Define entropy and discuss its physical significance. Show that entropy does not change during a cyclic reversible process and always increases during an irreversible process.
 - (b) Obtain an expression for the change in entropy when ice changes into stream.

- 4. (a) What are thermodynamic potentials? Derive Maxwell's thermodynamic relations using thermodynamic potentials.
 - (b) Calculate the change in melting point of ice when it is subjected to a pressure of 100 atmospheres [Given: density of ice = 0.92 g/cm³, latent heat of fusion = 80 cal/g].
- 5. Deduce the expression for Joule-Thomson coefficient '\u03c4': 9.6

$$\mu = \left(\frac{\partial T}{\partial P}\right)_{H}$$

$$= \frac{1}{C_{P}} \left[T \left(\frac{\partial V}{\partial T}\right)_{P} - V \right]$$

And by using Maxwell's relations show that for a real gas:

$$\mu = \frac{1}{C_p} \left(\frac{2a}{RT} - b \right)$$

- 6. (a) Draw a plot of spectral energy density with wavelengths at different temperatures for a black body and explain the plot.
 - (b) Discuss briefly the different laws which explain the above energy spectrum.
 - (c) Calculate the wavelength at which human body radiates maximum energy. Take body temperature as 37°C (Given: Wien's constant $b = 2.898 \times 10^{-3}$ m-K).

8,4,3

- 7. (a) Derive Maxwell-Boltzmann distribution law of velocity. How is this law verified experimentally?
 - (b) Calculate the root mean square velocity of hydrogen molecule at 27°C. [Given: $k_{\rm B} = 1.38 \times 10^{-23}$ J/deg and mass of hydrogen molecule is 3.34×10^{-27} kg]. 13,2
- 8. (a) What are transport phenomena? Obtain the expression for the coefficient of thermal conductivity of a gas.
 - (b) Calculate the mean free path of a gas molecule whose diameter is 3 Å and number of molecules per unit volume is 3×10^{25} m⁻³.