[This question paper contains 2 printed pages.]

Sr. No. of Question Paper	:	6868	D	Yo	ur Roll No	•
Unique Paper Code	:	222563				
Name of the Course	:	B.Sc. (Phys	ical Scien	ce)		
Name of the Paper	:	Physics – V (PHPT-505)	Quantum	Mechanic	s & Atomic Physics	3
Semester	:	v				
Duration : 3 Hours					Maximum Marks · 75	

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions.
- 3. All questions carry equal marks.
- (a) Discuss how Classical Physics failed to account for the spectral distribution of energy density in the black-body radiation. How did Planck overcome the difficulty. (9)
 - (b) Derive the relationship between group and phase velocity. (6)
- 2. (a) What is photoelectric effect ? Define threshold frequency and work function. Give an account of Einstein explanation of photoelectric effect on the basis of quantum theory. (6,5)
 - (b) Radiations of wavelength 5400 Å fall on a metal plate whose work function is 1.9eV. Find the kinetic energy of the emitted photoelectrons. (4)
- 3. (a) What is a wave packet ? (2)
 - (b) Prove that the de-Broglie wave packet associated with a moving body travels with the same velocity as the body.(6)
 - (c) State Heisenberg uncertainty principle and derive it on the basis of wave packets. (2,5)

P.T.O.

686	8	2					
4.	(a)	Obtain Schrodinger's time dependent form of wave equation for a particle in one dimension. (8)	e)				
	(b)	Calculate the expectation value of the momentum of a particle trapped in a one-dimensional box of length L. (4)	a)				
	(c)	What is tunnel effect ? (3))				
5.	(a)	What is the physical significance of the magnetic orbital quantum number and magnetic spin quantum number ? (3,3)	1)				
	(b)	What is Larmor's theorem ? Derive Larmor's frequency. (3,6))				
6.	(a)	What is Gyromagnetic ratio for the orbital and spin motion of an electron in an atom ? (3)	n)				
	(b)	Explain Stern- Gerlach experiment. What conclusions does it lead to ? (9,3))				
7.	(a)	What is Anomalous Zeeman effect ? Explain with the help of diagram the transitions between 3d and 2p levels in a Normal Zeeman effect. (3,6)	e)				
	(b)	Calculate the Lande g factor for the following states :					
		(i) $3^2 S_{1/2}$ (ii) $4^2 P_{3/2}$ (3,3))				
8.	(a)	Explain j-j coupling. (3))				
	(b)	Give all possible states under L-S coupling for two non-equivalent p electrons (2p-3p configuration). (5)	s)				
	(c)	State Pauli's exclusion principle. Give electronic configurations for the following elements (i) $Ag(Z=47)$ and (ii) $Ni(Z=28)$. (3,2,2)	g)				
	Som	e constants :					
	$h = 6.626 \times 10^{-34} Js$						
	$m_e = 9.1 \times 10^{-31} \text{ Kg}$						

(2500)