This questi	ion paper contains 2 printed pages]							
	Roll No.							
S. No. of Q	Puestion Paper : 91							
Unique Par	per Code : 222563 G							
Name of the Paper : Physics-V: Quantum Mechanics and Atomic Physics (PHPT-505								
Name of the Course : B.Sc. Physical Science / Applied Physical Science								
Semester	: V							
Duration: 3 Hours Maximum Marks: 75								
(Write your Roll No. on the top immediately on receipt of this question paper.)								
Attempt any five questions.								
	All questions carry equal marks.							
1. (a)	What is a wave packet? Prove that the de-Broglie wave packet associated with a moving							
	body travels with the same velocity as the body. 2,5							
(b)	State Heisenberg uncertainty principle and derive it on the basis of wave							
	packets. 2,6							
2. <i>(a)</i>	What is photoelectric effect? Define threshold frequency and work function. Give an							
	account of Einstein explanation of photoelectric effect on the basis of quantum							
(1)	theory. 3,3,5							
(b)	Radiations of wavelength 5400 Å fall on a metal plate whose work function is 1.9 eV. Find the kinetic energy of the emitted photoelectrons.							
3. (a)	What are admissibe conditions for a wave function?							
`,								
(b)	How do you correlate the operator $\hat{\mathbf{H}}$ to its corresponding physical quantity?							
(c)	Starting with time dependent Schrodinger wave equation, derive an expression for time-							
	independent wave function. 9							

(2)			91

4. Write short notes on any two of the following:

15

- (a) Inadequacies of classical mechanics
- (b) γ-ray microscope experiment
- (c) Compton effect
- 5. (a) What is Normal Zeeman effect? Derive an expression for the frequency shift in Normal Zeeman effect.
 - (b) Consider the normal Zeeman effect in the $3d \rightarrow 2p$ transition. Draw the energy-level diagram that shows the splitting of 3d and 2p levels in an external magnetic field. Also indicate all the possible transitions.
- 6. (a) What is Bohr Magneton? Give its unit.
 - (b) Discuss symmetric and anti-symmetric wave functions.
 - (c) Explain space quantization of L and S with the help of an example.
- 7. (a) Discuss LS and jj coupling.
 - (b) Find the possible values of total angular momentum quantum number J in LS coupling of two atomic electrons having orbital quantum numbers $l_1 = 2$ and $l_2 = 1$.
 - (c) What is the physical significance of the magnetic orbital quantum number and magnetic spin quantum number?
- 8. (a) State and explain the Pauli's exclusion principle.
 - (b) Obtain an expression for the maximum number of electrons that can be accommodated in a shell. Give electronic configurations for the following elements: 4,2,2
 - (i) Zn (Z = 30) and
 - (ii) La (Z = 57)
 - (c) Find the S, L and J values that correspond to each of the following states : ${}^{2}S_{1/2}$, ${}^{3}P_{2}$, ${}^{2}D_{3/2}$.