[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 7006 D Your Roll No......

Unique Paper Code : 235267

Name of the Course : B.Sc. Applied Physical Sciences (Analytical Chemistry)

(Part I)

B.Sc. Applied Physical Sciences (Industrial Chemistry)

(Part I)

Name of the Paper : MAPT-101 : Calculus and Matrices

Semester : II

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt any two questions from each Section.

3. Use of non-programmable scientific calculator is permitted.

SECTION I

1. (a) Determine whether the system of equations given below is consistent or not and solve, if the system is consistent.

$$x - 4y + 7z = 8$$

$$3x + 8y - 2z = 6$$

$$7x - 8y + 26z = 31$$

(b) Is set $A = \{(x, y, z) \text{ where } x, y, z \in R \text{ and } x = y + z\}$ a subspace of R^3 over R? If yes, describe it geometrically.

(c) Show that $Q = \{(1, -2), (2, 0)\}$ is a basis of R^2 over R. (4,4,4)

2. (a) Determine any two distinct basis for R over R.

(b) Find inverse of matrix A, using elementary row operations, where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}.$$

- (c) Let T: R³ \rightarrow R² be given by T(x, y, z) = $\begin{bmatrix} x+y \\ z-3 \end{bmatrix}$. Is T linear? (4,4,4)
- 3. (a) Using elementary row operations, reduce the matrix $\begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -3 \\ 3 & 3 & -3 \end{bmatrix}$ to triangular form and hence determine the rank.
 - (b) Determine the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which represents reflection about x-axis. Also, find the matrix of reflection about x-axis.
 - (c) Find the characteristic equation, characteristic value and corresponding characteristic vectors for the matrix $\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$. (4,4,4)

SECTION II

- 4. (a) Sketch the graph of y = 2 |x 1|. Mention the transformation used at each step.
 - (b) An amount of 10 ml of a medicine is injected into a patient's body. Half the amount of medicine is absorbed by the patient's body in 10 hours. How long will it take for the patient to absorb 70% of the medicine?
 - (c) Draw the level curve of $f(x, y) = x^2 + y^2$ of height k = 1, 4. (6,6,6)
- 5. (a) If $y = e^{m\cos^{-1}(x)}$, show that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$$

7006

3

- (b) Show that $z = e^x \sin(y) + e^y \cos(x)$ is a solution of Laplace's equation.
- (c) Find Taylor series generated by f(x) = cos(x) about x = 0 (assuming the possibility of its expansion). (6,6,6)
- 6. (a) Discuss the convergence of the sequences:

(i)
$$\left\langle \frac{\left(-1\right)^n}{n^2} \right\rangle$$

(ii)
$$\left\langle 10 + \frac{\cos^2(n)}{n^3} \right\rangle$$

(b) If $z = 3xy - y^3 + (y^2 - 2x)^{3/2}$. Show that

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}.$$

(c) Find
$$\frac{d^n y}{dx^n}$$
 where $y = \cos(2x - 3)$. (6,6,6)

SECTION III

- 7. (a) Find equation with lowest possible degree with real coefficients having $2+\sqrt{3}$ and 1+i as its roots.
 - (b) Using DeMoivre's Theorem, solve $z^4 + z^3 + z^2 + z + 1 = 0$. (3.5,4)
- 8. (a) Are points whose affixes are represented by 1 + i, 1 i, 3 3i collinear.

(b) Show that
$$(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos\left(\frac{n\pi}{4}\right)$$
. (3.5,4)

7006

4

- 9. (a) Find equation of circle described on the join of the points 1 + i, and 1 i as extremities of one of its diameters.
 - (b) Using DeMoivre's Theorem, find $(\sqrt{3} + i)^{1/3}$. (3.5,4)