This ques	tion paper con	tains 4 printed p	ages]	•		
			Roll No	р.		
S. No. of	Question Paper	: 1525				
Unique Paper Code		: 217267		,	E	
Name of t	he Paper	: Analytical C	hemistry—II (AC	CPT-202)		
Name of t	the Course	: B.Sc. Applie	d Physical Scienc	ces (Analytical	Chemistry)	
Semester		: n				
Duration:	: 3 Hours				Maximum N	/larks : 75
	(Write your R	oll No. on the top	immediately on r	eceipt of this q	uestion paper.)	
		Attemp	t Five questions	in all.		
		Questio	n No. 1 is comp	ulsory.		
1. Fill	in the blanks	: :			1.	5×10=15
(a)	As the partit	ion coefficient is	increased, the so	lute takes	-	to elute
	from the colu	ımn.	•			
(b)	Retention volume is the volume of solvent that is used to elute					
•	of the solute					
(c)	The faster th	e rate of solvent	flow	the	retention time.	
(d)	***************************************	is used	for the extraction	of component	of a mixture usin	g solvent
	extraction w	hen the solute is	in solid form.			

- (e) The distribution ratio D used in solvent extraction is to the D used in partition chromatography.
- (f) In elution analysis making a column will increase the degree of separation.
- (g) The relative ability of solvent to elute a solute using column chromatography is given by an
- (h) D is than K_D when dissociation takes place.
- (i) In paper chromatography R_f is proportional to K_D.
- (j) Spraying reagent used for detection of amino acids is
- (a) Define distribution ratio and prove the following relationship in the case of dissociation
 an acid HBz in water:

$$D = \frac{K_D}{1 + \frac{K_a}{[H^+]}}.$$

- (b) 50 mL of water containing 0.1 g of iodine was extracted with 25 mL of carbon tetrachloride. The K_D of Iodine between water and carbon tetrachloride at ordinary temperature is 1/85. What fraction of I₂ remains in water?
- (c) What are different criteria for the selection of extracting solvent?

P.T.O.

3.	(a)	a) What are the different techniques used in chromatographic separation? Ex					
		any one.	6				
	(b)	Why silica gel is not preferred for the separation of amines?	5				
	(c)	Give the name of spraying reagent that is used to detect the Ni ²⁺ and Co ²⁺ . W					
		the structure of complex.	4				
4.	(a)	Define the following terms:					
		(i) Eluate					
		(ii) Eluent					
		(iii) Elution and					
		(iv) Selective retardation.					
	(b)	Define R _f Give reason why literature values of R _f cannot be used in laboratory if					
		experimental work 2	4				
	(c)	Define adsorption isotherm and sketch the graph of S, L and H adsorptio	n				
		isotherm.	5				
5.	(a)	What are the advantages of thin layer chromatography over paper chromatography? 4					
	(b)	Explain the steps involved for the separation of mixture of amino acids using radial paper					
		chromatography.	4				
	(c)	What two properties of a solute spot determine whether it can be resolved from its					
		closest neighbour?	‡				
	(d)	Explain how two-dimensional thin layer chromatography is useful in the detection					
		of spots ?	}				

4) 1525

6. (a) What is the minimum difference between two R_f values for two adjacent spots in order to be able to resolve them?

- (b) What type of distribution processes can be used in thin-layer form to separate mixture of solutes?
- (c) What disadvantages do mixed solvents systems possess when used as eluting agents in thin-layer chromatography? What advantages do they possess that cause them to be so widely used?
- (d) Explain how adsorbent properties can alter the observed R_f values for a particular solute.

1525

4