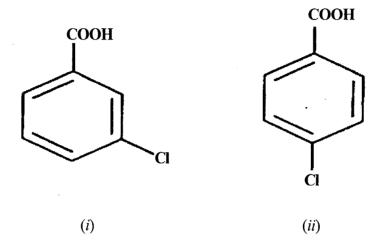
This question paper conta	ains 7 printed pages]	
	Roll No.	
S. No. of Question Paper	: 7019	
Unique Paper Code	: 217667 D	
Name of the Paper	: Instrumental Methods of Analysis—VI [ACPT-606]	
Name of the Course	: B.Sc. Applied Physical Sciences (Analytical Chemistry)	
Semester	: VI	
Duration: 3 Hours	Maximur	m Marks: 75
(Write your Ro	ll No. on the top immediately on receipt of this question paper	<i>:)</i>
	Attempt Five questions in all.	
Question No. 1 is compulsory.		
1. Answer any five:		5×3=15
(a) How many to	ranslational, rotational and vibrational degree of freedom	are there in
H ₂ O and CH	H ₄ molecules ?	
(b) Arrange the	following electromagnetic radiation in the increasing or	der of their
energy:		
Radiofreque	ncy, UV, Visible, Microwave and IR.	P.T.O

(-2) 7019


(c) Which of the following are NMR active and why?

- (d) Give the relationship between Larmor precessional frequency and applied magnetic field.
- (e) Explain, why absorption peaks obtained in UV-spectra are broader than those obtained in IR spectra?
- (f) Calculate the NMR frequency (in MHz) of the fluorine (19 F) in a magnetic field of intensity 1.4092T, given that γ of 19 F is 25.179 × 10⁷ rad T⁻¹ s⁻¹.
- 2. (a) Sketch the optical path of single beam instrument used in IR spectroscopy and precisely describe its function.
 - (b) How is IR spectroscopy useful to distinguish between inter- and intramolecular hydrogen bonding?
 - (c) Arrange the following in the increasing order of C = O absorption frequency (in cm⁻¹) and explain.

- (d) How will you distinguish between alkanes, alkenes and alkynes using IR spectroscopy?
- 3. (a) State Lambert-Beer's Law. A substance when dissolved in water at 10⁻³ M concentration absorb 10% of the incident radiation in the path of 1.0 cm length. What should be the concentration of the solution in order to absorb 90% of the same radiation?
 - (b) $n-\pi^*$ transition in UV spectroscopy is forbidden, whereas $\pi-\pi^*$ transition is allowed. Explain.
 - (c) Calculate the λ_{max} for the following compounds using Woodward-Fieser rules:

P.T.O.

(d) Predict and explain whether UV spectroscopy can be used to distinguish the following pair of compounds:

4. (a) A compound with molecular formula $C_{10}H_{12}O$ shows a strong absorption peak at

1715 cm⁻¹ and shows four peaks in its ¹H NMR spectrum :

6

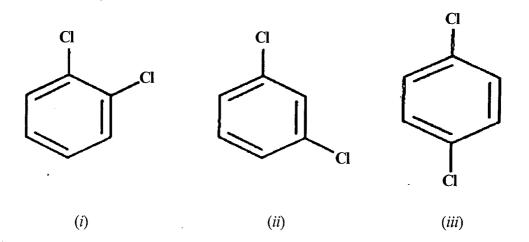
7019

$$\delta = 1.02$$
 (3 H, triplet)

$$\delta = 2.35$$
 (2 H, quartet)

$$\delta$$
 = 3.60 (2 H, singlet)

$$\delta$$
 = 7.25 (5 H, triplet)


Identify the compound.

(5)

- (b) Define the term spectroscopy. Which vector of electromagnetic radiation is responsible for the transition in NMR spectroscopy?
- (c) Define chemical shift. A proton resonated at 750 Hz from TMS on 500 MHz NMR instrument. Calculate its chemical shift value.
- (d) What are the common solvents used in NMR spectroscopy? Why is TMS used as internal reference in NMR spectroscopy?
- 5. (a) What are the differences between AAS and AES?
 - (b) Describe how deuterium lamp can be employed to provide a background corrections in AAS.
 - (c) Why is an electrothermal atomizer is more sensitive than flame atomizer?
 - (d) Which protons of the given molecule will resonate at negative δ value (-1.0 ppm) in its ¹H NMR spectrum and why?

4

- 6. (a) What are chemically equivalent and magnetically equivalent protons? Explain with a suitable example.
 - (b) What are the different transitions that take place in UV spectroscopy? Give the energy level diagram.
 - (c) In atomic emission spectroscopy why the energy of emission is lower than absorption?
 - (d) How will you distringuish the followings using ¹H NMR spectroscopy?

- 7. (a) Sketch the diagram of double beam flame spectrophotometer.
 - (b) What are the different radiation sources used in AAS? Explain.
 - (c) Write short notes on any two of the following:
 - (i) Spin-spin relaxation

(7) 7019

(ii) Phosphorescence

(iii) Spin-spin splitting.

(d) Define the following terms:

3

- (i) Doppler broadening
- (ii) Chemical interference.

500